Daniel Hilger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/85659/publications.pdf Version: 2024-02-01

DANIEL HILCER

#	Article	IF	CITATIONS
1	DeerAnalysis2006—a comprehensive software package for analyzing pulsed ELDOR data. Applied Magnetic Resonance, 2006, 30, 473-498.	1.2	941
2	Structure and dynamics of GPCR signaling complexes. Nature Structural and Molecular Biology, 2018, 25, 4-12.	8.2	638
3	Structural Insights into the Dynamic Process of β 2 -Adrenergic Receptor Signaling. Cell, 2015, 161, 1101-1111.	28.9	562
4	Structure of the µ-opioid receptor–Gi protein complex. Nature, 2018, 558, 547-552.	27.8	527
5	Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature, 2013, 497, 137-141.	27.8	393
6	Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nature Structural and Molecular Biology, 2018, 25, 289-296.	8.2	360
7	Structure of a Signaling Cannabinoid Receptor 1-G Protein Complex. Cell, 2019, 176, 448-458.e12.	28.9	323
8	Single-molecule analysis of ligand efficacy in β2AR–G-protein activation. Nature, 2017, 547, 68-73.	27.8	265
9	Structural basis for nucleotide exchange in heterotrimeric G proteins. Science, 2015, 348, 1361-1365.	12.6	250
10	Conformational transitions of a neurotensin receptorÂ1–Gi1Âcomplex. Nature, 2019, 572, 80-85.	27.8	199
11	Angiotensin Analogs with Divergent Bias Stabilize Distinct Receptor Conformations. Cell, 2019, 176, 468-478.e11.	28.9	194
12	Assembly of a GPCR-G Protein Complex. Cell, 2019, 177, 1232-1242.e11.	28.9	163
13	Development of an antibody fragment that stabilizes GPCR/G-protein complexes. Nature Communications, 2018, 9, 3712.	12.8	157
14	Assessing Oligomerization of Membrane Proteins by Four-Pulse DEER: pH-Dependent Dimerization of NhaA Na+/H+ Antiporter of E. coli. Biophysical Journal, 2005, 89, 1328-1338.	0.5	133
15	Structural Insights into the Process of GPCR-G Protein Complex Formation. Cell, 2019, 177, 1243-1251.e12.	28.9	121
16	Structural insights into differences in G protein activation by family A and family B GPCRs. Science, 2020, 369, .	12.6	103
17	High-Resolution Structure of a Na+/H+ Antiporter Dimer Obtained by Pulsed Electron Paramagnetic Resonance Distance Measurements. Biophysical Journal, 2007, 93, 3675-3683.	0.5	101
18	Initial Steps of Photosystem II de Novo Assembly and Preloading with Manganese Take Place in Biogenesis Centers in <i>Synechocystis</i> . Plant Cell, 2012, 24, 660-675.	6.6	86

DANIEL HILGER

#	Article	IF	CITATIONS
19	Structural mechanisms of selectivity and gating in anion channelrhodopsins. Nature, 2018, 561, 349-354.	27.8	67
20	The role of structural dynamics in GPCRâ€mediated signaling. FEBS Journal, 2021, 288, 2461-2489.	4.7	58
21	Local membrane charge regulates β2 adrenergic receptor coupling to Gi3. Nature Communications, 2019, 10, 2234.	12.8	57
22	Structures of active melanocortin-4 receptor–Gs-protein complexes with NDP-α-MSH and setmelanotide. Cell Research, 2021, 31, 1176-1189.	12.0	40
23	Backbone Structure of Transmembrane Domain IX of the Na+/Proline Transporter PutP of Escherichia coli. Biophysical Journal, 2009, 96, 217-225.	0.5	38
24	Viewing rare conformations of the β ₂ adrenergic receptor with pressure-resolved DEER spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31824-31831.	7.1	31
25	The Na+/L-proline transporter PutP. Frontiers in Bioscience - Landmark, 2012, 17, 745.	3.0	29
26	Role of Ser-340 and Thr-341 in Transmembrane Domain IX of the Na+/Proline Transporter PutP of Escherichia coli in Ligand Binding and Transport. Journal of Biological Chemistry, 2008, 283, 4921-4929.	3.4	26
27	Homology Model of the Na+/Proline Transporter PutP of Escherichia coli and Its Functional Implications. Journal of Molecular Biology, 2011, 406, 59-74.	4.2	23
28	Function of Transmembrane Domain IX in the Na+/Proline Transporter PutP. Journal of Molecular Biology, 2008, 382, 884-893.	4.2	20
29	Extracellular Loop 4 of the Proline Transporter PutP Controls the Periplasmic Entrance to Ligand Binding Sites. Structure, 2014, 22, 769-780.	3.3	19
30	Structures of Gα Proteins in Complex with Their Chaperone Reveal Quality Control Mechanisms. Cell Reports, 2020, 30, 3699-3709.e6.	6.4	18
31	Secondary Transport of Amino Acids in Prokaryotes. Journal of Membrane Biology, 2006, 213, 119-133.	2.1	17
32	Allosteric modulation of GPCRs: From structural insights to in silico drug discovery. , 2022, 237, 108242.		15
33	The Sodium/Proline Transporter PutP of Helicobacter pylori. PLoS ONE, 2013, 8, e83576.	2.5	14
34	Structural Insights into the Dynamic Process of β2-Adrenergic Receptor Signaling. Cell, 2015, 162, 1431.	28.9	8
35	Comparison of the functional properties of trimeric and monomeric CaiT of Escherichia coli. Scientific Reports, 2019, 9, 3787.	3.3	4
36	Time-resolved Conformational Analysis during GPCR-Gs Coupling. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2020, 93, 3-S28-3.	0.0	1