Gyula Kovacs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8565093/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Matrix metalloproteinase 12 is an independent prognostic factor predicting postoperative relapse of conventional renal cell carcinoma - a short report. Cellular Oncology (Dordrecht), 2022, 45, 193-198.	4.4	3
2	Ureteric Bud-derivatives in Wilms Tumor and Nephrogenic Rest. In Vivo, 2021, 35, 2159-2162.	1.3	0
3	Expression of TXNIP is associated with angiogenesis and postoperative relapse of conventional renal cell carcinoma. Scientific Reports, 2021, 11, 17200.	3.3	9
4	Connecting tubules develop from the tip of the ureteric bud in the human kidney. Histochemistry and Cell Biology, 2021, , 1.	1.7	2
5	Cytoplasmic Expression of AXL Is Associated With High Risk of Postoperative Relapse of Conventional Renal Cell Carcinoma. Anticancer Research, 2020, 40, 3485-3489.	1.1	2
6	Expression of RARRES1 and AGBL2 and progression of conventional renal cell carcinoma. British Journal of Cancer, 2020, 122, 1818-1824.	6.4	5
7	The Role of Genetic Analysis in Correct Diagnosis of Eosinophilic Variant of Chromophobe Renal Cell Carcinoma. Anticancer Research, 2020, 40, 6863-6867.	1.1	1
8	Impaired Vitamin D Signaling Is Associated With Frequent Development of Renal Cell Tumor in End-stage Kidney Disease. Anticancer Research, 2020, 40, 6525-6530.	1.1	3
9	FOXI1 Immunohistochemistry Differentiates Benign Renal Oncocytoma from Malignant Chromophobe Renal Cell Carcinoma. Anticancer Research, 2019, 39, 2785-2790.	1.1	5
10	IL6 Shapes an Inflammatory Microenvironment and Triggers the Development of Unique Types of Cancer in End-stage Kidney. Anticancer Research, 2019, 39, 1869-1874.	1.1	6
11	Dual role of KRT17: development of papillary renal cell tumor and progression of conventional renal cell carcinoma. Journal of Cancer, 2019, 10, 5124-5129.	2.5	15
12	M2 Macrophage Marker Chitinase 3-Like 2 (CHI3L2) Associates With Progression of Conventional Renal Cell Carcinoma. Anticancer Research, 2019, 39, 6939-6943.	1.1	11
13	Embryonal Origin of Metanephric Adenoma and its Differential Diagnosis. Anticancer Research, 2018, 38, 6663-6667.	1.1	7
14	Shift of Keratin Expression Profile in End-stage Kidney Increases the Risk of Tumor Development. Anticancer Research, 2018, 38, 5217-5222.	1.1	12
15	Recalling Cohnheim's Theory: Papillary Renal Cell Tumor as a Model of Tumorigenesis from Impaired Embryonal Differentiation to Malignant Tumors in Adults. International Journal of Biological Sciences, 2018, 14, 784-790.	6.4	6
16	Expression of inflammatory lipopolysaccharide binding protein (LBP) predicts the progression of conventional renal cell carcinoma - a short report. Cellular Oncology (Dordrecht), 2017, 40, 651-656.	4.4	13
17	Cytoplasmic expression of β atenin is an independent predictor of progression of conventional renal cell carcinoma: a simple immunostaining score. Histopathology, 2017, 70, 273-280.	2.9	10
18	Embryonal Origin of MTSCC of Kidney May Explain its Morphological Heterogeneity: Diagnostic Impact of Genetic Analysis. Anticancer Research, 2017, 37, 1185-1190.	1.1	2

GYULA KOVACS

#	Article	IF	CITATIONS
19	Down-regulation of Toll-like Receptor TLR4 Ιs Associated with HPV DNA Integration in Penile Carcinoma. , 2017, 37, 5515-5519.		3
20	Lack of TMEM27 expression is associated with postoperative progression of clinically localized conventional renal cell carcinoma. Journal of Cancer Research and Clinical Oncology, 2016, 142, 1947-1953.	2.5	6
21	High risk of development of renal cell tumor in end-stage kidney disease: the role of microenvironment. Tumor Biology, 2016, 37, 9511-9519.	1.8	9
22	Absence of Canonical WNT Signaling in Adult Renal Cell Tumors of Embryonal Origin. Anticancer Research, 2016, 36, 2169-73.	1.1	5
23	Sciellin is a marker for papillary renal cell tumours. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2015, 467, 695-700.	2.8	4
24	Homozygous losses detected by array comparative genomic hybridization in multiplex urothelial carcinomas of the bladder. Cancer Genetics, 2015, 208, 434-440.	0.4	10
25	Expression of KRT7 and WT1 differentiates precursor lesions of Wilms' tumours from those of papillary renal cell tumours and mucinous tubular and spindle cell carcinomas. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2012, 460, 423-427.	2.8	8
26	Genomic profiling of papillary renal cell tumours identifies small regions of DNA alterations: a possible role of HNF1B in tumour development. Histopathology, 2011, 58, 934-943.	2.9	12
27	Lack of <i>KISS1R</i> expression is associated with rapid progression of conventional renal cell carcinomas. Journal of Pathology, 2011, 223, 46-53.	4.5	21
28	Inflammatory Protein Serum Amyloid A1 Marks a Subset of Conventional Renal Cell Carcinomas with Fatal Outcome. European Urology, 2010, 57, 859-866.	1.9	60
29	Molecular analysis of germline t(3;6) and t(3;12) associated with conventional renal cell carcinomas indicates their rate-limiting role and supports the three-hit model of carcinogenesis. Cancer Genetics and Cytogenetics, 2010, 201, 15-23.	1.0	14
30	Highâ€resolution array CGH of metanephric adenomas: lack of DNA copy number changes. Histopathology, 2010, 56, 212-216.	2.9	20
31	How useful is αâ€methylacylâ€CoA racemase (AMACR) immunohistochemistry in the differential diagnosis of kidney cancers?. Histopathology, 2010, 56, 263-265.	2.9	5
32	Analysis of differentially expressed mitochondrial proteins in chromophobe renal cell carcinomas and renal oncocytomas by 2-D gel electrophoresis. International Journal of Biological Sciences, 2010, 6, 213-224.	6.4	39
33	Oligoarray comparative genomic hybridization of renal cell tumors that developed in patients with acquired cystic renal disease. Human Pathology, 2010, 41, 1345-1349.	2.0	20
34	Gene expression profiling of chromophobe renal cell carcinomas and renal oncocytomas by Affymetrix GeneChip using pooled and individual tumours. International Journal of Biological Sciences, 2009, 5, 517-527.	6.4	41
35	High-resolution DNA copy number and gene expression analyses distinguish chromophobe renal cell carcinomas and renal oncocytomas. BMC Cancer, 2009, 9, 152.	2.6	196
36	Re: Sunao Shoji, Xian Yan Tang, Shinobu Umemura, et al. Metastin Inhibits Migration and Invasion of Renal Cell Carcinoma with Overexpression of Metastin Receptor. Eur Urol 2009;55:441–51. European Urology, 2009, 55, e76.	1.9	1

GYULA KOVACS

#	Article	IF	CITATIONS
37	Three genetic developmental stages of papillary renal cell tumors: Duplication of chromosome 1q marks fatal progression. International Journal of Cancer, 2009, 124, 2071-2076.	5.1	43
38	Identifying CD82 (KAI1) as a marker for human chromophobe renal cell carcinoma. Histopathology, 2009, 55, 687-695.	2.9	38
39	Amplification and overexpression of E2F3 in human bladder cancer. Oncogene, 2004, 23, 1627-1630.	5.9	147
40	Lack of mutation of the folliculin gene in sporadic chromophobe renal cell carcinoma and renal oncocytoma. International Journal of Cancer, 2004, 109, 472-475.	5.1	48
41	Pathways of urothelial cancer progression suggested by Bayesian network analysis of allelotyping data. International Journal of Cancer, 2004, 110, 850-856.	5.1	29
42	Cloning and characterisation of the RBCC728/TRIM36 zinc-binding protein from the tumor suppressor gene region at chromosome 5q22.3. Gene, 2004, 332, 45-50.	2.2	25
43	Frequent allelic changes at chromosome 7q34 but lack of mutation of the BRAF in papillary renal cell tumors. International Journal of Cancer, 2003, 106, 980-981.	5.1	18
44	Mutations of mtDNA in renal cell tumours arising in endâ€stage renal disease. Journal of Pathology, 2003, 199, 237-242.	4.5	46
45	Re: Clonal Origin of Multifocal Renal Cell Carcinoma as Determined by Microsatellite Analysis. Journal of Urology, 2003, 170, 1325-1326.	0.4	1
46	Deletion of chromosome 3p14.2-p25 involving the VHL and FHIT genes in conventional renal cell carcinoma. Cancer Research, 2003, 63, 455-7.	0.9	55
47	Alteration of the LRP1B Gene Region Is Associated with High Grade of Urothelial Cancer. Laboratory Investigation, 2002, 82, 639-643.	3.7	65
48	Cloning the AFURS1 gene which is up-regulated in senescent human parenchymal kidney cells. Gene, 2002, 283, 271-275.	2.2	14
49	Somatic mitochondrial DNA mutations in human chromophobe renal cell carcinomas. Genes Chromosomes and Cancer, 2002, 35, 256-260.	2.8	53
50	Cloning a calcium channel α2Î^-3 subunit gene from a putative tumor suppressor gene region at chromosome 3p21.1 in conventional renal cell carcinoma. Gene, 2001, 264, 69-75.	2.2	20
51	Accumulation of Allelic Changes at Chromosomes 7p, 18q, and 2 in Parathyroid Lesions of Uremic Patients. Laboratory Investigation, 2001, 81, 527-533.	3.7	7
52	Allelic loss at 10q23.3 but lack of mutation of PTEN/MMAC1 in chromophobe renal cell carcinoma. Cancer Genetics and Cytogenetics, 2001, 128, 161-163.	1.0	30
53	Thetcf17 gene at chromosome 5q is not involved in the development of conventional renal cell carcinoma. , 2000, 86, 806-810.		7
54	Allelic changes at multiple regions of chromosome 5 are associated with progression of urinary bladder cancer. , 2000, 190, 163-168.		20

Gyula Kovacs

#	Article	IF	CITATIONS
55	High Density Deletion Mapping of Bladder Cancer Localizes the Putative Tumor Suppressor Gene Between Loci D8S504 and D8S264 at Chromosome 8p23.3. Laboratory Investigation, 2000, 80, 1089-1093.	3.7	43
56	Microsatellite analysis reveals deletion of a large region at chromosome 8p in conventional renal cell carcinoma. , 1999, 80, 22-24.		24
57	Duplication and overexpression of the mutant allele of the MET proto-oncogene in multiple hereditary papillary renal cell tumours. Oncogene, 1998, 17, 733-739.	5.9	127
58	A 33 bp minisatellite repeat upstream of the â€~mutated in colon cancer' gene at chromosome 5q21. Electrophoresis, 1998, 19, 1362-1365.	2.4	2
59	Duplication of two distinct regions on chromosome 5Q in non-papillary renal-cell carcinomas. , 1998, 76, 337-340.		20
60	Lack of genetic changes at specific genomic sites separates renal oncocytomas from renal cell carcinomas. Journal of Pathology, 1998, 184, 58-62.	4.5	36
61	Duplication of an approximately 1.5 Mb DNA segment at chromosome 5q22 indicates the locus of a new tumour gene in nonpapillary renal cell carcinomas. Oncogene, 1997, 14, 1093-1098.	5.9	24
62	The Heidelberg classification of renal cell tumours. Journal of Pathology, 1997, 183, 131-133.	4.5	1,142
63	Loss of heterozygosity at chromosomes 8p, 9p, and 14q is associated with stage and grade of non-papillary renal cell carcinomas. , 1997, 183, 151-155.		97
64	Significance of chromosome arm 14q loss in nonpapillary renal cell carcinomas. Genes Chromosomes and Cancer, 1997, 19, 29-35.	2.8	63
65	FHIT gene and the FRA3B region are not involved in the genetics of renal cell carcinomas. Genes Chromosomes and Cancer, 1997, 20, 9-15.	2.8	26
66	Detailed microsatellite analysis of chromosome 3p region in non-papillary renal cell carcinomas. , 1997, 73, 225-229.		27
67	MUTATION OF THEVHL GENE IS ASSOCIATED EXCLUSIVELY WITH THE DEVELOPMENT OF NON-PAPILLARY RENAL CELL CARCINOMAS. , 1996, 179, 157-161.		81
68	Refining a proximal breakpoint cluster at chromosome 3p11.2 in non-papillary renal cell carcinomas. , 1996, 68, 723-726.		12
69	Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Human Genetics, 1993, 90, 590-610.	3.8	544
70	Molecular Cytogenetics of Renal Cell Tumors. Advances in Cancer Research, 1993, 62, 89-124.	5.0	198
71	Mitochondrial and chromosomal DNA alterations in human chromophobe renal cell carcinomas. Journal of Pathology, 1992, 167, 273-277.	4.5	104
72	Low chromosome number in chromophobe renal cell carcinomas. Genes Chromosomes and Cancer, 1992, 4, 267-268.	2.8	137

#	Article	IF	CITATIONS
73	Cytogenetics of papillary renal cell tumors. Genes Chromosomes and Cancer, 1991, 3, 249-255.	2.8	316
74	Cytogenetics of renal cell carcinomas associated with von hippelâ€Lindau disease. Genes Chromosomes and Cancer, 1991, 3, 256-262.	2.8	63