
Thierry Lepage

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8564696/publications.pdf Version: 2024-02-01

THIEDDY LEDACE

#	Article	IF	CITATIONS
1	Deciphering and modelling the TGF-Î ² signalling interplays specifying the dorsal-ventral axis of the sea urchin embryo. Development (Cambridge), 2020, 148, .	2.5	4
2	Maternal factors regulating symmetry breaking and dorsal–ventral axis formation in the sea urchin embryo. Current Topics in Developmental Biology, 2020, 140, 283-316.	2.2	8
3	Expression of exogenous mRNAs to study gene function in echinoderm embryos. Methods in Cell Biology, 2019, 151, 239-282.	1.1	4
4	MAPK and GSK3/ß-TRCP-mediated degradation of the maternal Ets domain transcriptional repressor Yan/Tel controls the spatial expression of nodal in the sea urchin embryo. PLoS Genetics, 2018, 14, e1007621.	3.5	10
5	p38 MAPK as an essential regulator of dorsal-ventral axis specification and skeletogenesis during sea urchin development: a re-evaluation. Development (Cambridge), 2017, 144, 2270-2281.	2.5	6
6	A minimal molecular toolkit for mineral deposition? Biochemistry and proteomics of the test matrix of adult specimens of the sea urchin Paracentrotus lividus. Journal of Proteomics, 2016, 136, 133-144.	2.4	18
7	The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo. PLoS Biology, 2015, 13, e1002247.	5.6	31
8	A deuterostome origin of the Spemann organiser suggested by Nodal and ADMPs functions in Echinoderms. Nature Communications, 2015, 6, 8434.	12.8	46
9	Nodal: master and commander of the dorsal–ventral and left–right axes in the sea urchin embryo. Current Opinion in Genetics and Development, 2013, 23, 445-453.	3.3	62
10	Envelysin. , 2013, , 859-863.		0
11	Reciprocal Signaling between the Ectoderm and a Mesendodermal Left-Right Organizer Directs Left-Right Determination in the Sea Urchin Embryo. PLoS Genetics, 2012, 8, e1003121.	3.5	59
12	Maternal Oct1/2 is required for Nodal and Vg1/Univin expression during dorsal–ventral axis specification in the sea urchin embryo. Developmental Biology, 2011, 357, 440-449.	2.0	25
13	Wnt6 activates endoderm in the sea urchin gene regulatory network. Development (Cambridge), 2011, 138, 3297-3306.	2.5	60
14	Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo. Development (Cambridge), 2010, 137, 223-235.	2.5	97
15	Ancestral Regulatory Circuits Governing Ectoderm Patterning Downstream of Nodal and BMP2/4 Revealed by Gene Regulatory Network Analysis in an Echinoderm. PLoS Genetics, 2010, 6, e1001259.	3.5	133
16	Patterning of the Dorsal-Ventral Axis in Echinoderms: Insights into the Evolution of the BMP-Chordin Signaling Network. PLoS Biology, 2009, 7, e1000248.	5.6	176
17	A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left–right axes in deuterostomes. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2008, 310B, 41-53.	1.3	65
18	Lefty acts as an essential modulator of Nodal activity during sea urchin oral–aboral axis formation. Developmental Biology, 2008, 320, 49-59.	2.0	87

THIERRY LEPAGE

#	Article	IF	CITATIONS
19	FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis and regulate gastrulation during sea urchin development. Development (Cambridge), 2008, 135, 785-785.	2.5	7
20	FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis and regulate gastrulation during sea urchin development. Development (Cambridge), 2008, 135, 353-365.	2.5	133
21	Cis-regulatory analysis of <i>nodal</i> and maternal control of dorsal-ventral axis formation by Univin, a TGF-β related to Vg1. Development (Cambridge), 2007, 134, 3649-3664.	2.5	107
22	The Genome of the Sea Urchin <i>Strongylocentrotus purpuratus</i> . Science, 2006, 314, 941-952.	12.6	1,018
23	Expression pattern of three putative RNA-binding proteins during early development of the sea urchin Paracentrotus lividus. Gene Expression Patterns, 2006, 6, 864-872.	0.8	10
24	RTK and TGF-Î ² signaling pathways genes in the sea urchin genome. Developmental Biology, 2006, 300, 132-152.	2.0	140
25	The sea urchin kinome: A first look. Developmental Biology, 2006, 300, 180-193.	2.0	84
26	Zebrafish endoderm formation is regulated by combinatorial Nodal, FGF and BMP signalling. Development (Cambridge), 2006, 133, 2189-2200.	2.5	82
27	Nemo-like kinase (NLK) acts downstream of Notch/Delta signalling to downregulate TCF during mesoderm induction in the sea urchin embryo. Development (Cambridge), 2006, 133, 4341-4353.	2.5	52
28	Left-Right Asymmetry in the Sea Urchin Embryo Is Regulated by Nodal Signaling on the Right Side. Developmental Cell, 2005, 9, 147-158.	7.0	242
29	A Raf/MEK/ERK signaling pathway is required for development of the sea urchin embryo micromere lineage through phosphorylation of the transcription factor Ets. Development (Cambridge), 2004, 131, 1075-1087.	2.5	110
30	Nodal and BMP2/4 Signaling Organizes the Oral-Aboral Axis of the Sea Urchin Embryo. Developmental Cell, 2004, 6, 397-410.	7.0	331
31	The Pitx2 Homeobox Protein Is Required Early for Endoderm Formation and Nodal Signaling. Developmental Biology, 2001, 229, 287-306.	2.0	66
32	Structure of the Gene Encoding the Sea Urchin Blastula Protease 10 (BP10), A Member of the Astacin Family of Zn2+-Metalloproteases. FEBS Journal, 1996, 238, 744-751.	0.2	15
33	Signal transduction by cAMP-dependent protein kinase A in Drosophila limb patterning. Nature, 1995, 373, 711-715.	27.8	169
34	Structure of the sea urchin hatching enzyme gene. FEBS Journal, 1994, 219, 845-854.	0.2	28
35	Spatial expression of the hatching enzyme gene in the sea urchin embryo. Developmental Biology, 1992, 150, 23-32.	2.0	77