Patrick Plötz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/856445/publications.pdf

Version: 2024-02-01

50 papers

2,696 citations

236925 25 h-index 223800 46 g-index

51 all docs

51 docs citations

51 times ranked

1949 citing authors

#	Article	IF	CITATIONS
1	Synthetic European road freight transport flow data. Data in Brief, 2022, 40, 107786.	1.0	12
2	Hydrogen technology is unlikely to play a major role in sustainable road transport. Nature Electronics, 2022, 5, 8-10.	26.0	65
3	Public fast charging infrastructure for battery electric trucks—a model-based network for Germany. Environmental Research: Infrastructure and Sustainability, 2022, 2, 025004.	2.3	9
4	Empirical charging behavior of plug-in hybrid electric vehicles. Applied Energy, 2022, 321, 119293.	10.1	10
5	From lab-to-road: real-world fuel consumption and CO ₂ emissions of plug-in hybrid electric vehicles. Environmental Research Letters, 2021, 16, 054078.	5.2	37
6	Global perspective on CO ₂ emissions of electric vehicles. Environmental Research Letters, 2021, 16, 054043.	5.2	22
7	The effect of plug-in hybrid electric vehicle charging on fuel consumption and tail-pipe emissions. Environmental Research Communications, 2021, 3, 081001.	2.3	2
8	Where is the EU headed given its current climate policy? A stakeholder-driven model inter-comparison. Science of the Total Environment, 2021, 793, 148549.	8.0	26
9	Variability of daily car usage and the frequency of long-distance driving. Transportation Research, Part D: Transport and Environment, 2021, 101, 103126.	6.8	O
10	Can product service systems support electric vehicle adoption?. Transportation Research, Part A: Policy and Practice, 2020, 137, 343-359.	4.2	17
11	Assessment of fast-charging station locations—an integrated model based approach. , 2020, , 595-611.		O
12	Crafting strong, integrated policy mixes for deep CO2 mitigation in road transport. Nature Climate Change, 2020, 10, 809-818.	18.8	136
13	Are Battery-Electric Trucks for 24-Hour Delivery the Future of City Logistics?—A German Case Study. World Electric Vehicle Journal, 2020, 11, 16.	3.0	10
14	Electric Vehicle Adoption in Germany: Current Knowledge and Future Research. Lecture Notes in Mobility, 2020, , 189-211.	0.2	3
15	Designing car bans for sustainable transportation. Nature Sustainability, 2019, 2, 534-536.	23.7	60
16	The impact of ambitious fuel economy standards on the market uptake of electric vehicles and specific CO2 emissions. Energy Policy, 2019, 135, 111006.	8.8	42
17	How large is the effect of financial incentives on electric vehicle sales? – A global review and European analysis. Energy Economics, 2019, 84, 104493.	12.1	99
18	Market diffusion of alternative fuels and powertrains in heavy-duty vehicles: A literature review. Energy Reports, 2019, 5, 1010-1024.	5.1	62

#	Article	IF	Citations
19	Two methods of estimating long-distance driving to understand range restrictions on EV use. Transportation Research, Part D: Transport and Environment, 2019, 74, 294-305.	6.8	3
20	Consumer preferences for public charging infrastructure for electric vehicles. Transport Policy, 2019, 81, 54-63.	6.6	75
21	Machine learning estimates of plug-in hybrid electric vehicle utility factors. Transportation Research, Part D: Transport and Environment, 2019, 72, 36-46.	6.8	18
22	Impact of electric trucks powered by overhead lines on the European electricity system and CO2 emissions. Energy Policy, 2019, 130, 32-40.	8.8	54
23	Electric Trolley Trucks—A Techno-Economic Assessment for Germany. World Electric Vehicle Journal, 2019, 10, 86.	3.0	10
24	How much charging infrastructure do electric vehicles need? †A review of the evidence and international comparison. Transportation Research, Part D: Transport and Environment, 2019, 77, 224-242.	6.8	162
25	Invest in fast-charging infrastructure or in longer battery ranges? A cost-efficiency comparison for Germany. Applied Energy, 2019, 235, 888-899.	10.1	38
26	Can public slow charging accelerate plug-in electric vehicle sales? A simulation of charging infrastructure usage and its impact on plug-in electric vehicle sales for Germany. International Journal of Sustainable Transportation, 2019, 13, 528-542.	4.1	27
27	A review of consumer preferences of and interactions with electric vehicle charging infrastructure. Transportation Research, Part D: Transport and Environment, 2018, 62, 508-523.	6.8	393
28	Fast charging infrastructure for electric vehicles: Today's situation and future needs. Transportation Research, Part D: Transport and Environment, 2018, 62, 314-329.	6.8	223
29	Empirical Fuel Consumption and CO ₂ Emissions of Plugâ€In Hybrid Electric Vehicles. Journal of Industrial Ecology, 2018, 22, 773-784.	5.5	50
30	The impact of daily and annual driving on fuel economy and CO2 emissions of plug-in hybrid electric vehicles. Transportation Research, Part A: Policy and Practice, 2018, 118, 331-340.	4.2	39
31	What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models. Renewable and Sustainable Energy Reviews, 2018, 93, 158-164.	16.4	113
32	On the distribution of individual daily driving distances. Transportation Research Part B: Methodological, 2017, 101, 213-227.	5.9	81
33	CO2 Mitigation Potential of Plug-in Hybrid Electric Vehicles larger than expected. Scientific Reports, 2017, 7, 16493.	3.3	61
34	Can policy measures foster plug-in electric vehicle market diffusion?. World Electric Vehicle Journal, 2016, 8, 789-797.	3.0	8
35	A Model for Public Fast Charging Infrastructure Needs. World Electric Vehicle Journal, 2016, 8, 943-954.	3.0	8
36	Are multi-car households better suited for battery electric vehicles? – Driving patterns and economics in Sweden and Germany. Transportation Research Part C: Emerging Technologies, 2016, 65, 1-15.	7.6	89

#	Article	IF	Citations
37	What is the market potential of plug-in electric vehicles as commercial passenger cars? A case study from Germany. Transportation Research, Part D: Transport and Environment, 2015, 37, 171-187.	6.8	56
38	Modelling market diffusion of electric vehicles with real world driving data – German market and policy options. Transportation Research, Part A: Policy and Practice, 2015, 77, 95-112.	4.2	49
39	Dimensions of energy efficiency in a political context. Energy Efficiency, 2015, 8, 97-115.	2.8	19
40	A review of combined models for market diffusion of alternative fuel vehicles and their refueling infrastructure. Renewable and Sustainable Energy Reviews, 2015, 47, 783-793.	16.4	85
41	Addressing the Different Needs for Charging Infrastructure: An Analysis of Some Criteria for Charging Infrastructure Set-up. Green Energy and Technology, 2015, , 73-90.	0.6	16
42	Modelling market diffusion of electric vehicles with real world driving data â€" Part I: Model structure and validation. Ecological Economics, 2014, 107, 411-421.	5.7	79
43	A Comparison of Different Means to Increase Daily Range of Electric Vehicles: The Potential of Battery Sizing, Increased Vehicle Efficiency and Charging Infrastructure. , 2014, , .		3
44	Who will buy electric vehicles? Identifying early adopters in Germany. Transportation Research, Part A: Policy and Practice, 2014, 67, 96-109.	4.2	250
45	Market potential for electric vehicles in the German commercial passenger transport sector., 2013,,.		7
46	How well can early adopters of electric vehicles be identified?., 2013,,.		1
47	Effective spin model for interband transport in a Wannier-Stark lattice system. European Physical Journal D, 2011, 63, 47-53.	1.3	17
48	Stýckelberg-interferometry with ultra-cold atoms. European Physical Journal D, 2011, 65, 199-205.	1.3	13
49	Detection of avoided crossings by fidelity. Physica A: Statistical Mechanics and Its Applications, 2011, 390, 1363-1369.	2.6	10
50	Collapse and revival in inter-band oscillations of a two-band Bose–Hubbard model. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 081001.	1.5	18