Gary T Rochelle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8563653/publications.pdf Version: 2024-02-01

		29994	16127
214	16,574	54	124
papers	citations	h-index	g-index
217	217	217	8924
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Creative absorber design and optimization for CO2 capture with aqueous piperazine. International Journal of Greenhouse Gas Control, 2022, 113, 103534.	2.3	6
2	Energy use of piperazine with the advanced stripper from pilot plant testing. International Journal of Greenhouse Gas Control, 2022, 113, 103531.	2.3	1
3	Pilot plant results with the piperazine advanced stripper at NGCC conditions. International Journal of Greenhouse Gas Control, 2022, 113, 103551.	2.3	13
4	Process design of the piperazine advanced stripper for a 460 MW NGCC. International Journal of Greenhouse Gas Control, 2022, 115, 103631.	2.3	4
5	CO2 absorption rate in biphasic solvent of aminoethylethanolamine and diethylethanolamine. Chemical Engineering Journal, 2021, 404, 126503.	6.6	36
6	Volatility of 2-(diethylamino)-ethanol and 2-((2-aminoethyl) amino) ethanol, a biphasic solvent for CO2 capture. International Journal of Greenhouse Gas Control, 2021, 106, 103257.	2.3	9
7	Zero- and negative-emissions fossil-fired power plants using CO2 capture by conventional aqueous amines. International Journal of Greenhouse Gas Control, 2021, 111, 103473.	2.3	21
8	Effects of carbon treating on piperazine oxidation in pilot plant testing of PZASâ,,¢. International Journal of Greenhouse Gas Control, 2021, 112, 103502.	2.3	3
9	CO ₂ Absorption from Gas Turbine Flue Gas by Aqueous Piperazine with Intercooling. Industrial & Engineering Chemistry Research, 2020, 59, 7174-7181.	1.8	18
10	Corrosion by Aqueous Piperazine at 40–150 °C in Pilot Testing of CO ₂ Capture. Industrial & Engineering Chemistry Research, 2020, 59, 7189-7197.	1.8	6
11	Rate-based modeling and economic optimization of next-generation amine-based carbon capture plants. Applied Energy, 2019, 252, 113379.	5.1	27
12	CO2 absorption rate and capacity of semi-aqueous piperazine for CO2 capture. International Journal of Greenhouse Gas Control, 2019, 85, 182-186.	2.3	32
13	Corrosion of carbon steel by aqueous piperazine protected by FeCO3. International Journal of Greenhouse Gas Control, 2019, 85, 23-29.	2.3	5
14	CO2 solubility and mass transfer in water-lean solvents. Chemical Engineering Science, 2019, 202, 403-416.	1.9	42
15	Lost work: A comparison of water-lean solvent to a second generation aqueous amine process for CO2 capture. International Journal of Greenhouse Gas Control, 2019, 84, 82-90.	2.3	29
16	Pilot plant demonstration of piperazine with the advanced flash stripper. International Journal of Greenhouse Gas Control, 2019, 84, 72-81.	2.3	37
17	Demonstration of 99% CO2 removal from coal flue gas by amine scrubbing. International Journal of Greenhouse Gas Control, 2019, 83, 236-244.	2.3	32
18	Piperazine aerosol mitigation for post-combustion carbon capture. International Journal of Greenhouse Gas Control, 2019, 91, 102845.	2.3	9

#	Article	IF	CITATIONS
19	Mass Transfer Parameters for Packings: Effect of Viscosity. Industrial & Engineering Chemistry Research, 2018, 57, 718-729.	1.8	41
20	CO2 absorption rate in semi-aqueous monoethanolamine. Chemical Engineering Science, 2018, 182, 56-66.	1.9	73
21	Volatility of amines for CO 2 capture. International Journal of Greenhouse Gas Control, 2017, 58, 1-9.	2.3	30
22	Effectiveness of absorber intercooling for CO 2 absorption from natural gas fired flue gases using monoethanolamine solvent. International Journal of Greenhouse Gas Control, 2017, 58, 246-255.	2.3	36
23	Thermodynamic and Mass-Transfer Modeling of Carbon Dioxide Absorption into Aqueous 2-Amino-2-Methyl-1-Propanol. Industrial & Engineering Chemistry Research, 2017, 56, 319-330.	1.8	17
24	Reaction kinetics of carbon dioxide and hydroxide in aqueous glycerol. Chemical Engineering Science, 2017, 161, 151-158.	1.9	23
25	Amine Aerosol Characterization by Phase Doppler Interferometry. Energy Procedia, 2017, 114, 939-951.	1.8	5
26	Pilot testing of a heat integrated 0.7 MWe CO2 capture system with two-stage air-stripping: Emission. International Journal of Greenhouse Gas Control, 2017, 64, 267-275.	2.3	17
27	Field Measurement of Amine Aerosol by FTIR and Phase Doppler Interferometry. Energy Procedia, 2017, 114, 906-929.	1.8	2
28	Modeling Amine Aerosol Growth in the Absorber and Water Wash. Energy Procedia, 2017, 114, 959-976.	1.8	7
29	Heat Transfer Enhancement and Optimization of Lean/Rich Solvent Cross Exchanger for Amine Scrubbing. Energy Procedia, 2017, 114, 1890-1903.	1.8	5
30	Effects of Catalysts, Inhibitors, and Contaminants on Piperazine Oxidation. Energy Procedia, 2017, 114, 1919-1929.	1.8	4
31	Thermally Degraded Diglycolamine®/Dimethylaminoethoxyethanol for CO2 Capture. Energy Procedia, 2017, 114, 1737-1750.	1.8	3
32	MEA and Piperazine Corrosion of Carbon Steel and Stainless Steel. Energy Procedia, 2017, 114, 1751-1764.	1.8	14
33	Effects of Viscosity on CO2 Absorption in Aqueous Piperazine/2-methylpiperazine. Energy Procedia, 2017, 114, 2103-2120.	1.8	14
34	Modeling of absorber pilot plant performance for CO2 capture with aqueous piperazine. International Journal of Greenhouse Gas Control, 2017, 64, 300-313.	2.3	21
35	Regeneration Design for NGCC CO2 Capture with Amine-only and Hybrid Amine/Membrane. Energy Procedia, 2017, 114, 1394-1408.	1.8	11
36	Modeling Amine Aerosol Growth at Realistic Pilot Plant Conditions. Energy Procedia, 2017, 114, 1045-1060.	1.8	12

#	Article	IF	CITATIONS
37	Review of Recent Pilot Plant Activities with Concentrated Piperazine. Energy Procedia, 2017, 114, 1110-1127.	1.8	12
38	Effect of Liquid Viscosity on Mass Transfer Area and Liquid Film Mass Transfer Coefficient for GT-OPTIMPAK 250Y. Energy Procedia, 2017, 114, 2713-2727.	1.8	17
39	Piperazine/4-hydroxy-1-methylpiperidine for CO2 capture. Chemical Engineering Journal, 2017, 307, 258-263.	6.6	35
40	Thermal Degradation of Piperazine/4-Hydroxy-1-methylpiperidine for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2016, 55, 10004-10010.	1.8	2
41	Thermal Degradation of Aminosilicone Carbamates. Energy & amp; Fuels, 2016, 30, 10671-10678.	2.5	2
42	Regulatory Control of Amine Scrubbing for CO ₂ Capture from Power Plants. Industrial & Engineering Chemistry Research, 2016, 55, 4646-4657.	1.8	33
43	Energy Performance of Advanced Reboiled and Flash Stripper Configurations for CO ₂ Capture Using Monoethanolamine. Industrial & Engineering Chemistry Research, 2016, 55, 4622-4631.	1.8	28
44	Pilot plant test of the advanced flash stripper for CO ₂ capture. Faraday Discussions, 2016, 192, 37-58.	1.6	43
45	Dimensionless Models for Predicting the Effective Area, Liquid-Film, and Gas-Film Mass-Transfer Coefficients of Packing. Industrial & Engineering Chemistry Research, 2016, 55, 5373-5384.	1.8	21
46	Capacity and absorption rate of tertiary and hindered amines blended with piperazine for CO 2 capture. Chemical Engineering Science, 2016, 155, 397-404.	1.9	65
47	Optimum heat of absorption for CO 2 capture using the advanced flash stripper. International Journal of Greenhouse Gas Control, 2016, 53, 169-177.	2.3	21
48	Thermodynamic and mass transfer modeling of carbon dioxide absorption into aqueous 2-piperidineethanol. Chemical Engineering Science, 2016, 153, 295-307.	1.9	16
49	CCS – A technology for now: general discussion. Faraday Discussions, 2016, 192, 125-151.	1.6	5
50	Dynamic modeling and control of an intercooled absorber for post-combustion CO2 capture. Chemical Engineering and Processing: Process Intensification, 2016, 107, 1-10.	1.8	24
51	Process control of the advanced flash stripper for CO2 solvent regeneration. Chemical Engineering and Processing: Process Intensification, 2016, 107, 21-28.	1.8	2
52	Absorber modeling for NGCC carbon capture with aqueous piperazine. Faraday Discussions, 2016, 192, 459-477.	1.6	24
53	Comment on "Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plantsâ€. Environmental Science & Technology, 2016, 50, 6112-6113.	4.6	5
54	Thermal degradation of novel piperazine-based amine blends for CO 2 capture. International Journal of Greenhouse Gas Control, 2016, 49, 239-249.	2.3	25

#	Article	IF	CITATIONS
55	Control Relevant Model of Amine Scrubbing for CO ₂ Capture from Power Plants. Industrial & Engineering Chemistry Research, 2016, 55, 1690-1700.	1.8	21
56	Approaching a reversible stripping process for CO2 capture. Chemical Engineering Journal, 2016, 283, 1033-1043.	6.6	60
57	Pilotâ€scale evaluation of concentrated piperazine for CO ₂ capture at an Australian coalâ€fired power station: duration experiments. , 2015, 5, 363-373.		11
58	Pilotâ€scale parametric evaluation of concentrated piperazine for CO ₂ capture at an Australian coalâ€fired power station. , 2015, 5, 7-16.		24
59	Nitrosamine formation and mitigation in blended amines for CO 2 capture. International Journal of Greenhouse Gas Control, 2015, 39, 329-334.	2.3	16
60	Pilot-scale evaluation of concentrated piperazine for CO2 capture at an Australian coal-fired power station: Nitrosamine measurements. International Journal of Greenhouse Gas Control, 2015, 37, 256-263.	2.3	20
61	NO ₂ -Catalyzed Sulfite Oxidation. Industrial & Engineering Chemistry Research, 2015, 54, 4815-4822.	1.8	17
62	Packing characterization: Absorber economic analysis. International Journal of Greenhouse Gas Control, 2015, 42, 124-131.	2.3	12
63	Piperazine/N-methylpiperazine/N,N'-dimethylpiperazine as an Aqueous Solvent for Carbon Dioxide Capture. Oil and Gas Science and Technology, 2014, 69, 903-914.	1.4	7
64	Effect of Liquid Viscosity on the Liquid Phase Mass Transfer Coefficient of Packing. Energy Procedia, 2014, 63, 1268-1286.	1.8	32
65	Thermal Degradation of Linear Amines for CO2 Capture. Energy Procedia, 2014, 63, 1558-1568.	1.8	19
66	Absorption of Nitrogen Oxides in Aqueous Amines. Energy Procedia, 2014, 63, 830-847.	1.8	22
67	Thermodynamic Modeling of Aqueous Piperazine/N-(2-Aminoethyl) Piperazine for CO2 Capture. Energy Procedia, 2014, 63, 997-1017.	1.8	9
68	Hybrid Membrane-absorption CO2 Capture Process. Energy Procedia, 2014, 63, 605-613.	1.8	54
69	Pilot Plant Activities with Concentrated Piperazine. Energy Procedia, 2014, 63, 1376-1391.	1.8	17
70	CO2 Mass Transfer and Solubility in Aqueous Primary and Secondary Amine. Energy Procedia, 2014, 63, 1487-1496.	1.8	14
71	Oxidative Degradation of Amine Solvents for CO2 Capture. Energy Procedia, 2014, 63, 1546-1557.	1.8	13
72	Carbon capture and storage update. Energy and Environmental Science, 2014, 7, 130-189.	15.6	1,765

#	Article	IF	CITATIONS
73	Cold Rich Bypass to Strippers for CO ₂ Capture by Concentrated Piperazine. Chemical Engineering and Technology, 2014, 37, 149-156.	0.9	11
74	Inhibitors of Monoethanolamine Oxidation in CO ₂ Capture Processes. Industrial & Engineering Chemistry Research, 2014, 53, 16222-16228.	1.8	24
75	Nitrosamine Formation in Amine Scrubbing at Desorber Temperatures. Environmental Science & Technology, 2014, 48, 8777-8783.	4.6	36
76	Maximizing coal-fired power plant efficiency with integration of amine-based CO2 capture in greenfield and retrofit scenarios. Energy, 2014, 72, 824-831.	4.5	19
77	Decomposition of Nitrosamines in CO2 Capture by Aqueous Piperazine or Monoethanolamine. Environmental Science & Technology, 2014, 48, 5996-6002.	4.6	47
78	Regeneration with Rich Bypass of Aqueous Piperazine and Monoethanolamine for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2014, 53, 4067-4074.	1.8	65
79	Thermodynamic modeling of piperazine/2-aminomethylpropanol/CO2/water. Chemical Engineering Science, 2014, 117, 331-341.	1.9	36
80	Optimization of Stripping Piperazine with Variable Rich Loading. Energy Procedia, 2014, 63, 1842-1853.	1.8	6
81	Dynamic Modeling, Validation, and Time Scale Decomposition of an Advanced Post-combustion Amine Scrubbing Process. Energy Procedia, 2014, 63, 1296-1307.	1.8	4
82	Absorber Intercooling Configurations using Aqueous Piperazine for Capture from Sources with 4 to 27% CO2. Energy Procedia, 2014, 63, 1637-1656.	1.8	35
83	Absorber Performance with High CO2. Energy Procedia, 2014, 63, 1329-1338.	1.8	6
84	Quantification of Gas and Aerosol-phase Piperazine Emissions by FTIR Under Variable Bench-scale Absorber Conditions. Energy Procedia, 2014, 63, 871-883.	1.8	7
85	Thermodynamic and Kinetic Modeling of Piperazine/2-Methylpiperazine. Energy Procedia, 2014, 63, 1243-1255.	1.8	2
86	Optimization of Advanced Flash Stripper for CO2 Capture using Piperazine. Energy Procedia, 2014, 63, 1504-1513.	1.8	42
87	Aqueous 3-(methylamino)propylamine for CO2 capture. International Journal of Greenhouse Gas Control, 2013, 15, 70-77.	2.3	26
88	Oxidative Degradation of Amines With High-Temperature Cycling. Energy Procedia, 2013, 37, 2118-2132.	1.8	34
89	Thermal Degradation of Piperazine Blends with Diamines. Energy Procedia, 2013, 37, 1904-1911.	1.8	16
90	Characterization of Novel Structured Packings for CO2 Capture. Energy Procedia, 2013, 37, 2145-2153.	1.8	15

#	Article	IF	CITATIONS
91	Thermal Decomposition of N-nitrosopiperazine. Energy Procedia, 2013, 37, 1678-1686.	1.8	17
92	Pilot Plant Results with Piperazine. Energy Procedia, 2013, 37, 1572-1583.	1.8	16
93	Piperazine Degradation in Pilot Plants. Energy Procedia, 2013, 37, 1912-1923.	1.8	49
94	Modeling Pilot Plant Performance of an Absorber with Aqueous Piperazine. Energy Procedia, 2013, 37, 1987-2001.	1.8	14
95	Carbon Capture with 4 m Piperazine/4 m 2-Methylpiperazine. Energy Procedia, 2013, 37, 436-447.	1.8	14
96	Modeling Aerosols in Amine-based CO2 Capture. Energy Procedia, 2013, 37, 1706-1719.	1.8	26
97	Products and process variables in oxidation of monoethanolamine for CO2 capture. International Journal of Greenhouse Gas Control, 2013, 12, 472-477.	2.3	32
98	Characterization of Piperazine/2-Aminomethylpropanol for Carbon Dioxide Capture. Energy Procedia, 2013, 37, 340-352.	1.8	41
99	Amine blends using concentrated piperazine. Energy Procedia, 2013, 37, 353-369.	1.8	79
100	Absorption rates and CO2 solubility in new piperazine blends. Energy Procedia, 2013, 37, 370-385.	1.8	14
101	Control of carbon dioxide solubility in aqueous piperazine. Computers and Chemical Engineering, 2013, 54, 122-124.	2.0	0
102	Modeling pilot plant results for CO2 stripping using piperazine in two stage flash. Energy Procedia, 2013, 37, 386-399.	1.8	21
103	Optimal CO2 Capture Operation in an Advanced Electric Grid. Energy Procedia, 2013, 37, 2585-2594.	1.8	19
104	Aqueous Piperazine/N-(2-Aminoethyl) Piperazine for CO2 Capture. Energy Procedia, 2013, 37, 1621-1638.	1.8	28
105	Energy Performance of Advanced Stripper Configurations. Energy Procedia, 2013, 37, 1696-1705.	1.8	15
106	Two-Stage Flash for CO2 Regeneration: Dynamic Modeling and Pilot Plant Validation. Energy Procedia, 2013, 37, 2133-2144.	1.8	15
107	Managing n-nitrosopiperazine and dinitrosopiperazine. Energy Procedia, 2013, 37, 273-284.	1.8	14
108	Modeling of pilot stripper results for CO2 capture by aqueous piperazine. International Journal of Greenhouse Gas Control, 2013, 12, 280-287.	2.3	19

#	Article	IF	CITATIONS
109	Thermodynamics of CO ₂ /2-Methylpiperazine/Water. Industrial & Engineering Chemistry Research, 2013, 52, 4229-4238.	1.8	20
110	Modeling of CO ₂ Absorption Kinetics in Aqueous 2-Methylpiperazine. Industrial & Engineering Chemistry Research, 2013, 52, 4239-4248.	1.8	23
111	Kinetics of <i>N</i> -Nitrosopiperazine Formation from Nitrite and Piperazine in CO ₂ Capture. Environmental Science & Technology, 2013, 47, 3528-3534.	4.6	41
112	An effective multi-loop control system to improve control performance of CO <inf>2</inf> capture. , 2013, , .		0
113	The Impact of Electricity Market Conditions on the Value of Flexible CO2 Capture. , 2012, , .		2
114	Oxidation of Aqueous Piperazine: Oxidation Rates, Products, and High-Temperature Oxidation. ACS Symposium Series, 2012, , 219-237.	0.5	3
115	Packing Characterization: Mass Transfer Properties. Energy Procedia, 2012, 23, 23-32.	1.8	25
116	Optimizing post-combustion CO2 capture in response to volatile electricity prices. International Journal of Greenhouse Gas Control, 2012, 8, 180-195.	2.3	68
117	Thermal degradation of amines for CO2 capture. Current Opinion in Chemical Engineering, 2012, 1, 183-190.	3.8	171
118	CO ₂ Absorption Rate into Concentrated Aqueous Monoethanolamine and Piperazine. Journal of Chemical & Engineering Data, 2011, 56, 2187-2195.	1.0	72
119	Reaction Products from the Oxidative Degradation of Monoethanolamine. Industrial & Engineering Chemistry Research, 2011, 50, 667-673.	1.8	88
120	Density and Viscosity of Aqueous (Piperazine + Carbon Dioxide) Solutions. Journal of Chemical & Engineering Data, 2011, 56, 574-581.	1.0	38
121	Modeling CO2 absorption into concentrated aqueous monoethanolamine and piperazine. Chemical Engineering Science, 2011, 66, 5212-5218.	1.9	19
122	Foaming of aqueous piperazine and monoethanolamine for CO2 capture. International Journal of Greenhouse Gas Control, 2011, 5, 381-386.	2.3	49
123	Aqueous piperazine as the new standard for CO2 capture technology. Chemical Engineering Journal, 2011, 171, 725-733.	6.6	417
124	Aqueous piperazine derivatives for CO2 capture: Accurate screening by a wetted wall column. Chemical Engineering Research and Design, 2011, 89, 1693-1710.	2.7	88
125	A dimensionless model for predicting the massâ€ŧransfer area of structured packing. AICHE Journal, 2011, 57, 1173-1184.	1.8	125
126	Stripper configurations for CO2 capture by aqueous monoethanolamine. Chemical Engineering Research and Design, 2011, 89, 1639-1646.	2.7	110

#	Article	IF	CITATIONS
127	Degradation of aqueous methyldiethanolamine by temperature and oxygen cycling. Energy Procedia, 2011, 4, 23-28.	1.8	43
128	Modeling piperazine thermodynamics. Energy Procedia, 2011, 4, 35-42.	1.8	26
129	Thermal degradation of piperazine and its structural analogs. Energy Procedia, 2011, 4, 43-50.	1.8	40
130	Accurate screening of amines by the Wetted Wall Column. Energy Procedia, 2011, 4, 101-108.	1.8	55
131	Total pressure and CO2 solubility at high temperature in aqueous amines. Energy Procedia, 2011, 4, 117-124.	1.8	52
132	Oxidation of amines at absorber conditions for CO2 capture from flue gas. Energy Procedia, 2011, 4, 171-178.	1.8	30
133	Stripper configurations for CO2 capture by aqueous monoethanolamine and piperazine. Energy Procedia, 2011, 4, 1323-1330.	1.8	54
134	Modeling pilot plant results for CO2 capture by aqueous piperazine. Energy Procedia, 2011, 4, 1593-1600.	1.8	38
135	Volatility of aqueous amines in CO2 capture. Energy Procedia, 2011, 4, 1624-1630.	1.8	50
136	Subspace system identification for CO <inf>2</inf> recovery processes. , 2011, , .		1
137	Modeling CO <inf>2</inf> recovery for optimal dynamic operations. , 2011, , .		Ο
138	Absorber intercooling in CO ₂ absorption by piperazineâ€promoted potassium carbonate. AICHE Journal, 2010, 56, 905-914.	1.8	14
139	Carbon dioxide capture with concentrated, aqueous piperazine. International Journal of Greenhouse Gas Control, 2010, 4, 119-124.	2.3	318
140	Degradation of aqueous piperazine in carbon dioxide capture. International Journal of Greenhouse Gas Control, 2010, 4, 756-761.	2.3	140
141	Amine volatility in CO2 capture. International Journal of Greenhouse Gas Control, 2010, 4, 707-715.	2.3	159
142	Aqueous Ethylenediamine for CO ₂ Capture. ChemSusChem, 2010, 3, 913-918.	3.6	99
143	Modeling CO2 capture with aqueous monoethanolamine. International Journal of Greenhouse Gas Control, 2010, 4, 161-166.	2.3	88
144	Turning CO2 Capture On and Off in Response to Electric Grid Demand: A Baseline Analysis of Emissions and Economics. Journal of Energy Resources Technology, Transactions of the ASME, 2010, 132, .	1.4	58

#	Article	IF	CITATIONS
145	Rate modeling of CO2 stripping from potassium carbonate promoted by piperazineâ ⁻ †. International Journal of Greenhouse Gas Control, 2009, 3, 121-132.	2.3	52
146	Catalysts and inhibitors for oxidative degradation of monoethanolamine. International Journal of Greenhouse Gas Control, 2009, 3, 704-711.	2.3	70
147	Thermal degradation of monoethanolamine at stripper conditions. Energy Procedia, 2009, 1, 327-333.	1.8	243
148	Absorption and desorption rates of carbon dioxide with monoethanolamine and piperazine. Energy Procedia, 2009, 1, 1163-1169.	1.8	124
149	Modeling CO2 capture with aqueous monoethanolamine. Energy Procedia, 2009, 1, 1171-1178.	1.8	65
150	Catalysts and inhibitors for MEA oxidation. Energy Procedia, 2009, 1, 1179-1185.	1.8	44
151	Influence of viscosity and surface tension on the effective mass transfer area of structured packing. Energy Procedia, 2009, 1, 1197-1204.	1.8	54
152	MDEA/Piperazine as a solvent for CO2 capture. Energy Procedia, 2009, 1, 1351-1357.	1.8	114
153	Carbon dioxide capture with concentrated, aqueous piperazine. Energy Procedia, 2009, 1, 1489-1496.	1.8	79
154	Amine Scrubbing for CO ₂ Capture. Science, 2009, 325, 1652-1654.	6.0	3,490
155	Dynamic Modeling to Minimize Energy Use for CO ₂ Capture in Power Plants by Aqueous Monoethanolamine. Industrial & Engineering Chemistry Research, 2009, 48, 6105-6111.	1.8	110
156	Rate-Based Process Modeling Study of CO ₂ Capture with Aqueous Monoethanolamine Solution. Industrial & Engineering Chemistry Research, 2009, 48, 9233-9246.	1.8	249
157	Influence of Surface Tension on Effective Packing Area. Industrial & Engineering Chemistry Research, 2008, 47, 1253-1260.	1.8	60
158	Effects of the Temperature Bulge in CO ₂ Absorption from Flue Gas by Aqueous Monoethanolamine. Industrial & Engineering Chemistry Research, 2008, 47, 867-875.	1.8	181
159	Alternative stripper configurations for CO ₂ capture by aqueous amines. AICHE Journal, 2007, 53, 3144-3154.	1.8	264
160	Carbon Dioxide Absorption and Desorption in Aqueous Monoethanolamine Solutions in a Rotating Packed Bed. Industrial & Engineering Chemistry Research, 2007, 46, 2823-2833.	1.8	211
161	Energy Performance of Stripper Configurations for CO2Capture by Aqueous Amines. Industrial & Engineering Chemistry Research, 2006, 45, 2457-2464.	1.8	243
162	Innovative Absorber/Stripper Configurations for CO2Capture by Aqueous Monoethanolamine. Industrial & Engineering Chemistry Research, 2006, 45, 2465-2472.	1.8	202

#	Article	IF	CITATIONS
163	Absorption of CO2in Aqueous Diglycolamine. Industrial & Engineering Chemistry Research, 2006, 45, 2473-2482.	1.8	38
164	Oxidation Inhibitors for Copper and Iron Catalyzed Degradation of Monoethanolamine in CO2Capture Processes. Industrial & Engineering Chemistry Research, 2006, 45, 2513-2521.	1.8	148
165	Thermodynamics and Equilibrium Solubility of Carbon Dioxide in Diglycolamine/Morpholine/Water. Journal of Chemical & Engineering Data, 2006, 51, 708-717.	1.0	20
166	Kinetics of Carbon Dioxide Absorption into Aqueous Potassium Carbonate and Piperazine. Industrial & Engineering Chemistry Research, 2006, 45, 2531-2545.	1.8	155
167	Absorption ofCO2in aqueous blends of diglycolamine®and morpholine. Chemical Engineering Science, 2006, 61, 3830-3837.	1.9	20
168	Thermodynamics of aqueous potassium carbonate, piperazine, and carbon dioxide. Fluid Phase Equilibria, 2005, 227, 197-213.	1.4	129
169	Chlorine Absorption in Sulfite Solutions. Separation Science and Technology, 2004, 39, 3057-3077.	1.3	7
170	Carbon dioxide absorption with aqueous potassium carbonate promoted by piperazine. Chemical Engineering Science, 2004, 59, 3619-3630.	1.9	234
171	Monoethanolamine Degradation:Â O2Mass Transfer Effects under CO2Capture Conditions. Industrial & Engineering Chemistry Research, 2004, 43, 6400-6408.	1.8	246
172	Modeling of CO2 capture by aqueous monoethanolamine. AICHE Journal, 2003, 49, 1676-1686.	1.8	302
173	Liquid-phase mass transfer in spray contactors. AICHE Journal, 2003, 49, 2363-2373.	1.8	33
174	CO2Absorption Rate and Solubility in Monoethanolamine/Piperazine/Water. Separation Science and Technology, 2003, 38, 337-357.	1.3	114
175	Thermodynamics of Piperazine/Methyldiethanolamine/Water/Carbon Dioxide. Industrial & Engineering Chemistry Research, 2002, 41, 604-612.	1.8	162
176	Oxidative Degradation of Monoethanolamine. Industrial & Engineering Chemistry Research, 2002, 41, 4178-4186.	1.8	253
177	Effect of mixing on efficiencies for reactive tray contactors. AICHE Journal, 2002, 48, 2537-2544.	1.8	7
178	Absorption of carbon dioxide in aqueous piperazine/methyldiethanolamine. AICHE Journal, 2002, 48, 2788-2799.	1.8	247
179	CO2 absorption into aqueous mixtures of diglycolamine \hat{A}^{\circledast} and methyldiethanolamine. Chemical Engineering Science, 2000, 55, 5125-5140.	1.9	72
180	Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility. Chemical Engineering Science, 2000, 55, 5531-5543.	1.9	531

#	Article	IF	CITATIONS
181	Physical and chemical solubility of carbon dioxide in aqueous methyldiethanolamine. Fluid Phase Equilibria, 2000, 168, 241-258.	1.4	52
182	Preparation of Calcium Silicate Absorbent from Iron Blast Furnace Slag. Journal of the Air and Waste Management Association, 2000, 50, 1655-1662.	0.9	18
183	Absorption of HCl and SO2from Humidified Flue Gas with Calcium Silicate Solids. Industrial & Engineering Chemistry Research, 2000, 39, 1048-1060.	1.8	13
184	Dry Absorption of HCL and SO2with Hydrated Lime from Humidified Flue Gas. Industrial & Engineering Chemistry Research, 1999, 38, 4068-4080.	1.8	35
185	Nitrogen Dioxide Absorption and Sulfide Oxidation in Aqueous Sulfide. Journal of the Air and Waste Management Association, 1999, 49, 332-338.	0.9	13
186	Preparation of calcium silicate absorbent from recycled glass. Environmental Progress, 1998, 17, 86-91.	0.8	8
187	Nitrogen Dioxide Absorption and Sulfite Oxidation in Aqueous Sulfite. Environmental Science & Technology, 1998, 32, 1994-2003.	4.6	113
188	Simultaneous Sulfur Dioxide and Nitrogen Dioxide Removal by Calcium Hydroxide and Calcium Silicate Solids. Journal of the Air and Waste Management Association, 1998, 48, 819-828.	0.9	53
189	Rate-Based Modeling of Reactive Absorption of CO2 and H2S into Aqueous Methyldiethanolamine. Industrial & Engineering Chemistry Research, 1998, 37, 4107-4117.	1.8	76
190	Mercury Absorption in Aqueous Oxidants Catalyzed by Mercury(II). Industrial & Engineering Chemistry Research, 1998, 37, 380-387.	1.8	27
191	A Thermodynamic Model of Methyldiethanolamineâ^'CO2â^'H2Sâ^'Water. Industrial & Engineering Chemistry Research, 1997, 36, 3944-3953.	1.8	113
192	Nitrogen Dioxide Reaction with Alkaline Solids. Industrial & Engineering Chemistry Research, 1996, 35, 999-1005.	1.8	23
193	A simple model for prediction of acid gas solubilities in alkanolamines. Separation and Purification Technology, 1996, 10, 181-186.	0.3	52
194	Hg absorption in aqueous permanganate. AICHE Journal, 1996, 42, 3559-3562.	1.8	19
195	Approximate simulation of CO2 and H2s absorption into aqueous alkanolamines. AICHE Journal, 1993, 39, 1389-1397.	1.8	17
196	Limestone Dissolution in Flue Gas Scrubbing: Effect of Sulfite. Journal of the Air and Waste Management Association, 1992, 42, 926-935.	0.2	26
197	Numerical simulation of theories for gas absorption with chemical reaction. AICHE Journal, 1989, 35, 1271-1281.	1.8	80
198	Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems using the electrolyte-NRTL equation. Industrial & Engineering Chemistry Research, 1989, 28, 1060-1073.	1.8	455

#	Article	IF	CITATIONS
199	Removal of SO ₂ and NO _X from Stack Gas by Reaction with Calcium Hydroxide Solids. Japca, 1989, 39, 175-179.	0.3	26
200	Effect of Deliquescent Salt Additives on the Reaction of SO2 with Ca(OH)2. ACS Symposium Series, 1986, , 208-222.	0.5	6
201	Activity Coefficients Predicted by the Local Composition Model for Aqueous Solutions Used in Flue Gas Desulfurization. ACS Symposium Series, 1986, , 223-233.	0.5	1
202	Calcium sulfite hemihydrate: Crystal growth rate and crystal habit. Environmental Progress, 1986, 5, 5-11.	0.8	18
203	Limestone dissolution in stack gas desulfurization. A mass-transfer model is shown to predict the the measured dissolution rates with less than 30% error. Environmental Progress, 1982, 1, 52-58.	0.8	37
204	Effect of limestone type and grind on SO2 scrubber performance. The cost-reduction effect of finer limestone grinding on SO2 scrubber efficiency can be very considerable. Environmental Progress, 1982, 1, 59-65.	0.8	9
205	Diethylenetriamine solutions for stack gas desulfurization by absorption/stripping. Drastic reductions in steam consumption can be realized in a simple absorption/stripping process. Environmental Progress, 1982, 1, 160-167.	0.8	0
206	Sulfur Dioxide Vapor Pressure and pH of Sodium Citrate Buffer Solutions with Dissolved Sulfur Dioxide. ACS Symposium Series, 1980, , 269-291.	0.5	2
207	FEED for Piperazine with the Advanced Stripperrâ"¢ on NGCC at Denver City, Texas. SSRN Electronic Journal, 0, , .	0.4	5
208	Demonstrating solvent management technologies for an aqueous AMP/PZ solvent. SSRN Electronic Journal, O, , .	0.4	4
209	Pilot Plant Results With the Piperazine Advanced Stripper at NGCC Conditions. SSRN Electronic Journal, 0, , .	0.4	2
210	Heat Loss and Energy Use in Pilot Plant Testing of Piperazine With the Advanced Stripper. SSRN Electronic Journal, 0, , .	0.4	1
211	CO2 Absorption Rate and Solubility in Monoethanolamine/Piperazine/Water. , 0, .		3
212	CO2 Absorption Rate and Capacity of Semi-Aqueous Piperazine for CO2 Capture. SSRN Electronic Journal, 0, , .	0.4	1
213	Advancing CO2 Capture from Natural Gas Combined Cycle Power Plants with Piperazine Scrubbing. SSRN Electronic Journal, 0, , .	0.4	0
214	Fe2+ Solubility and Siderite Formation in Monoethanolamine and Piperazine Solvents. SSRN Electronic Journal, 0, , .	0.4	1