
Veronica Ghiglieri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8562923/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alpha-synuclein and cortico-striatal plasticity in animal models of Parkinson disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, 184, 153-166.	1.8	4
2	Striatal glutamatergic hyperactivity in Parkinson's disease. Neurobiology of Disease, 2022, 168, 105697.	4.4	26
3	Long-Term Shaping of Corticostriatal Synaptic Activity by Acute Fasting. International Journal of Molecular Sciences, 2021, 22, 1916.	4.1	2
4	Neuro-Immune Cross-Talk in the Striatum: From Basal Ganglia Physiology to Circuit Dysfunction. Frontiers in Immunology, 2021, 12, 644294.	4.8	16
5	Dopamine-dependent early synaptic and motor dysfunctions induced by α-synuclein in the nigrostriatal circuit. Brain, 2021, 144, 3477-3491.	7.6	49
6	Transcranial Magnetic Stimulation Exerts "Rejuvenation―Effects on Corticostriatal Synapses after Partial Dopamine Depletion. Movement Disorders, 2021, 36, 2254-2263.	3.9	10
7	Serotonin drives striatal synaptic plasticity in a sex-related manner. Neurobiology of Disease, 2021, 158, 105448.	4.4	3
8	CalDAG-GEFI mediates striatal cholinergic modulation of dendritic excitability, synaptic plasticity and psychomotor behaviors. Neurobiology of Disease, 2021, 158, 105473.	4.4	8
9	Effects of uremic toxins on hippocampal synaptic transmission: implication for neurodegeneration in chronic kidney disease. Cell Death Discovery, 2021, 7, 295.	4.7	8
10	Reply to: Rewiring Brains in Parkinson's Disease: The New Era of Brain Stimulation. Movement Disorders, 2021, 36, 2979-2980.	3.9	0
11	Rapamycin, by Inhibiting mTORC1 Signaling, Prevents the Loss of Striatal Bidirectional Synaptic Plasticity in a Rat Model of L-DOPA-Induced Dyskinesia. Frontiers in Aging Neuroscience, 2020, 12, 230.	3.4	18
12	Maternal stress programs accelerated aging of the basal ganglia motor system in offspring. Neurobiology of Stress, 2020, 13, 100265.	4.0	3
13	Effects of safinamide on the glutamatergic striatal network in experimental Parkinson's disease. Neuropharmacology, 2020, 170, 108024.	4.1	8
14	Corticostriatal synaptic plasticity alterations in the R6/1 transgenic mouse model of Huntington's disease. Journal of Neuroscience Research, 2019, 97, 1655-1664.	2.9	10
15	Blunting neuroinflammation with resolvin D1 prevents early pathology in a rat model of Parkinson's disease. Nature Communications, 2019, 10, 3945.	12.8	127
16	Dopamine drives bingeâ€like consumption of a palatable food in experimental Parkinsonism. Movement Disorders, 2019, 34, 821-831.	3.9	11
17	Alpha-synuclein targets GluN2A NMDA receptor subunit causing striatal synaptic dysfunction and visuospatial memory alteration. Brain, 2019, 142, 1365-1385.	7.6	82
18	Striatal spreading depolarization: Possible implication in levodopaâ€induced dyskineticâ€like behavior. Movement Disorders, 2019, 34, 832-844.	3.9	6

#	Article	IF	CITATIONS
19	NMDA receptor GluN2D subunit participates to levodopa-induced dyskinesia pathophysiology. Neurobiology of Disease, 2019, 121, 338-349.	4.4	24
20	Motor learning and metaplasticity in striatal neurons: relevance for Parkinson's disease. Brain, 2018, 141, 505-520.	7.6	62
21	Alpha-Synuclein: From Early Synaptic Dysfunction to Neurodegeneration. Frontiers in Neurology, 2018, 9, 295.	2.4	138
22	Intermittent thetaâ€burst stimulation rescues dopamineâ€dependent corticostriatal synaptic plasticity and motor behavior in experimental parkinsonism: Possible role of glial activity. Movement Disorders, 2017, 32, 1035-1046.	3.9	38
23	Environmental Enrichment Repairs Structural and Functional Plasticity in the Hippocampus. , 2017, , 55-77.		1
24	Rabphilin 3A: A novel target for the treatment of levodopa-induced dyskinesias. Neurobiology of Disease, 2017, 108, 54-64.	4.4	40
25	Hippocampal neuroplasticity and inflammation: relevance for multiple sclerosis. Multiple Sclerosis and Demyelinating Disorders, 2017, 2, .	1.1	19
26	Persistent activation of microglia and NADPH oxidase drive hippocampal dysfunction in experimental multiple sclerosis. Scientific Reports, 2016, 6, 20926.	3.3	68
27	Repetitive transcranial magnetic stimulation reduces remote apoptotic cell death and inflammation after focal brain injury. Journal of Neuroinflammation, 2016, 13, 150.	7.2	62
28	Hyperkinetic disorders and loss of synaptic downscaling. Nature Neuroscience, 2016, 19, 868-875.	14.8	98
29	Memantine alters striatal plasticity inducing a shift of synaptic responses toward long-term depression. Neuropharmacology, 2016, 101, 341-350.	4.1	16
30	Alpha-Synuclein Produces Early Behavioral Alterations via Striatal Cholinergic Synaptic Dysfunction by Interacting With GluN2D N -Methyl-D-Aspartate Receptor Subunit. Biological Psychiatry, 2016, 79, 402-414.	1.3	77
31	Modulation of serotonergic transmission by eltoprazine in L-DOPA-induced dyskinesia: Behavioral, molecular, and synaptic mechanisms. Neurobiology of Disease, 2016, 86, 140-153.	4.4	53
32	Interaction between basal ganglia and limbic circuits in learning and memory processes. Parkinsonism and Related Disorders, 2016, 22, S65-S68.	2.2	18
33	Rhes influences striatal cAMP/PKA-dependent signaling and synaptic plasticity in a gender-sensitive fashion. Scientific Reports, 2015, 5, 10933.	3.3	38
34	Attachment and parental reflective functioning features in ADHD: enhancing the knowledge on parenting characteristics. Frontiers in Psychology, 2015, 6, 1313.	2.1	6
35	Levodopa-induced plasticity: a double-edged sword in Parkinson's disease?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140184.	4.0	71
36	Rhes regulates dopamine D2 receptor transmission in striatal cholinergic interneurons. Neurobiology of Disease, 2015, 78, 146-161.	4.4	25

#	Article	IF	CITATIONS
37	Region- and age-dependent reductions of hippocampal long-term potentiation and NMDA to AMPA ratio in a genetic model of Alzheimer's disease. Neurobiology of Aging, 2015, 36, 123-133.	3.1	30
38	Derangement of Ras-Guanine Nucleotide-Releasing Factor 1 (Ras-GRF1) and Extracellular Signal-Regulated Kinase (ERK) Dependent Striatal Plasticity in L-DOPA-Induced Dyskinesia. Biological Psychiatry, 2015, 77, 106-115.	1.3	67
39	Interferon-β1a protects neurons against mitochondrial toxicity via modulation of STAT1 signaling: Electrophysiological evidence. Neurobiology of Disease, 2014, 62, 387-393.	4.4	17
40	l-DOPA reverses the impairment of Dentate Gyrus LTD in experimental parkinsonism via β-adrenergic receptors. Experimental Neurology, 2014, 261, 377-385.	4.1	9
41	Direct and indirect pathways of basal ganglia: a critical reappraisal. Nature Neuroscience, 2014, 17, 1022-1030.	14.8	598
42	Environmental enrichment restores CA1 hippocampal LTP and reduces severity of seizures in epileptic mice. Experimental Neurology, 2014, 261, 320-327.	4.1	25
43	"Lazy―nigrostriatal synapses in the heterozygous PINK1 mouse model of familial Parkinson's disease. Movement Disorders, 2014, 29, 11-14.	3.9	2
44	Rhes, a key element of selective neuronal vulnerability in Huntington's disease: A striatalâ€specific license to kill during energy metabolism failure. Movement Disorders, 2013, 28, 735-735.	3.9	2
45	Effects of central and peripheral inflammation on hippocampal synaptic plasticity. Neurobiology of Disease, 2013, 52, 229-236.	4.4	155
46	Rebalance of Striatal NMDA/AMPA Receptor Ratio Underlies the Reduced Emergence of Dyskinesia During D2-Like Dopamine Agonist Treatment in Experimental Parkinson's Disease. Journal of Neuroscience, 2012, 32, 17921-17931.	3.6	67
47	Functional interactions within striatal microcircuit in animal models of Huntington's disease. Neuroscience, 2012, 211, 165-184.	2.3	17
48	Corticostriatal Plastic Changes in Experimental L-DOPA-Induced Dyskinesia. Parkinson's Disease, 2012, 2012, 1-10.	1.1	15
49	Mechanisms underlying the impairment of hippocampal long-term potentiation and memory in experimental Parkinson's disease. Brain, 2012, 135, 1884-1899.	7.6	124
50	Prenatal stress and hippocampal BDNF expression: a fading imperative. Journal of Physiology, 2012, 590, 1309-1310.	2.9	4
51	Theta-burst stimulation and striatal plasticity in experimental parkinsonism. Experimental Neurology, 2012, 236, 395-398.	4.1	23
52	Striatum–hippocampus balance: From physiological behavior to interneuronal pathology. Progress in Neurobiology, 2011, 94, 102-114.	5.7	43
53	Hippocampal enlargement in Bassoon-mutant mice is associated with enhanced neurogenesis, reduced apoptosis, and abnormal BDNF levels. Cell and Tissue Research, 2011, 346, 11-26.	2.9	23
54	Dopamine-Dependent Long-Term Depression Is Expressed in Striatal Spiny Neurons of Both Direct and Indirect Pathways: Implications for Parkinson's Disease. Journal of Neuroscience, 2011, 31, 12513-12522.	3.6	94

#	Article	IF	CITATIONS
55	Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia. Brain, 2011, 134, 375-387.	7.6	125
56	The Distinct Role of Medium Spiny Neurons and Cholinergic Interneurons in the D ₂ /A _{2A} Receptor Interaction in the Striatum: Implications for Parkinson's Disease. Journal of Neuroscience, 2011, 31, 1850-1862.	3.6	140
57	Levodopa-induced dyskinesias in patients with Parkinson's disease: filling the bench-to-bedside gap. Lancet Neurology, The, 2010, 9, 1106-1117.	10.2	329
58	Lâ€3,4â€dihydroxyphenylalanineâ€induced sprouting of serotonin axon terminals: A useful biomarker for dyskinesias?. Annals of Neurology, 2010, 68, 578-580.	5.3	10
59	Direct and indirect pathways in levodopaâ€induced dyskinesia: A more complex matter than a network imbalance. Movement Disorders, 2010, 25, 1527-1529.	3.9	5
60	Synaptic dysfunction in Parkinson's disease. Biochemical Society Transactions, 2010, 38, 493-497.	3.4	96
61	Distinct Levels of Dopamine Denervation Differentially Alter Striatal Synaptic Plasticity and NMDA Receptor Subunit Composition. Journal of Neuroscience, 2010, 30, 14182-14193.	3.6	155
62	Assemblies of glutamate receptor subunits with post-synaptic density proteins and their alterations in Parkinson's disease. Progress in Brain Research, 2010, 183, 169-182.	1.4	41
63	TrkB/BDNF-Dependent Striatal Plasticity and Behavior in a Genetic Model of Epilepsy: Modulation by Valproic Acid. Neuropsychopharmacology, 2010, 35, 1531-1540.	5.4	32
64	Impaired Plasticity at Specific Subset of Striatal Synapses in the Ts65Dn Mouse Model of Down Syndrome. Biological Psychiatry, 2010, 67, 666-671.	1.3	28
65	Hippocampal Synaptic Plasticity, Memory, and Epilepsy: Effects of Long-Term Valproic Acid Treatment. Biological Psychiatry, 2010, 67, 567-574.	1.3	68
66	mTOR inhibitor rapamycin suppresses striatal post-ischemic LTP. Experimental Neurology, 2010, 226, 328-331.	4.1	23
67	Epilepsyâ€induced abnormal striatal plasticity in Bassoon mutant mice. European Journal of Neuroscience, 2009, 29, 1979-1993.	2.6	26
68	Short-term and long-term plasticity at corticostriatal synapses: Implications for learning and memory. Behavioural Brain Research, 2009, 199, 108-118.	2.2	115
69	Molecular mechanisms underlying levodopa-induced dyskinesia. Movement Disorders, 2008, 23, S570-S579.	3.9	99
70	l-DOPA dosage is critically involved in dyskinesia via loss of synaptic depotentiation. Neurobiology of Disease, 2008, 29, 327-335.	4.4	105
71	Acetyl-l-Carnitine selectively prevents post-ischemic LTP via a possible action on mitochondrial energy metabolism. Neuropharmacology, 2008, 55, 223-229.	4.1	25
72	Striatal synaptic changes in experimental parkinsonism: Role of NMDA receptor trafficking in PSD. Parkinsonism and Related Disorders, 2008, 14, S145-S149.	2.2	14

#	Article	IF	CITATIONS
73	The Endocannabinoid System in Parkinsons Disease. Current Pharmaceutical Design, 2008, 14, 2337-2346.	1.9	52
74	Plastic abnormalities in experimental Huntington's disease. Current Opinion in Pharmacology, 2007, 7, 106-111.	3.5	30
75	Neuronal networks and synaptic plasticity in Parkinson's disease: beyond motor deficits. Parkinsonism and Related Disorders, 2007, 13, S259-S262.	2.2	55
76	Plastic and behavioral abnormalities in experimental Huntington's disease: A crucial role for cholinergic interneurons. Neurobiology of Disease, 2006, 22, 143-152.	4.4	79
77	A Critical Interaction between NR2B and MAGUK in L-DOPA Induced Dyskinesia. Journal of Neuroscience, 2006, 26, 2914-2922.	3.6	243
78	Electrophysiological and pharmacological characteristics of nigral dopaminergic neurons in the conscious, head-restrained rat. Synapse, 2003, 48, 1-9.	1.2	33
79	Prenatal exposure to a cannabinoid agonist produces memory deficits linked to dysfunction in hippocampal long-term potentiation and glutamate release. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4915-4920.	7.1	176
80	Neurofunctional Effects of Developmental Alcohol Exposure in Alcohol-Preferring and Alcohol-Nonpreferring Rats. Neuropsychopharmacology, 2001, 24, 691-705.	5.4	22
81	Cigarette smoke inhalation stimulates dopaminergic neurons in rats. NeuroReport, 2000, 11, 3637-3639.	1.2	18