Antonio Medina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8562761/publications.pdf

Version: 2024-02-01

172 papers 3,292 citations

186265
28
h-index

50 g-index

172 all docs

 $\begin{array}{c} 172 \\ \\ \text{docs citations} \end{array}$

172 times ranked 4092 citing authors

#	Article	IF	CITATIONS
1	Curcumin–β-cyclodextrin inclusion complex: Stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chemistry, 2014, 153, 361-370.	8.2	401
2	Optical band-gap determination of nanostructured WO3 film. Applied Physics Letters, 2010, 96, .	3.3	281
3	Extraction of sunflower (Heliantus annuus L.) oil with supercritical CO2 and subcritical propane: Experimental and modeling. Chemical Engineering Journal, 2011, 168, 262-268.	12.7	98
4	Photoacoustic spectroscopy as a tool for determination of food dyes: Comparison with first derivative spectrophotometry. Talanta, 2010, 81, 202-207.	5.5	91
5	Nd2O3 doped low silica calcium aluminosilicate glasses: Thermomechanical properties. Journal of Applied Physics, 1999, 85, 8112-8118.	2.5	73
6	Relations among nonbridging oxygen, optical properties, optical basicity, and color center formation in CaO–MgO aluminosilicate glasses. Journal of Applied Physics, 2008, 104, .	2.5	68
7	Co-doped ZnO nanoparticles synthesized by an adapted sol–gel method: effects on the structural, optical, photocatalytic and antibacterial properties. Journal of Sol-Gel Science and Technology, 2014, 72, 301-309.	2.4	67
8	Hydrogen Peroxide Diffusion Dynamics in Dental Tissues. Journal of Dental Research, 2013, 92, 661-665.	5.2	63
9	Optical and spectroscopic study of erbium doped calcium borotellurite glasses. Optical Materials, 2017, 66, 211-219.	3.6	57
10	Time-resolved thermal lens measurements of the thermo-optical properties of glasses at low temperature down to 20 K. Physical Review B, 2005, 71 , .	3.2	56
11	Characterization of natural nanostructured hydroxyapatite obtained from the bones of Brazilian river fish. Journal of Applied Physics, 2006, 100, 094312.	2.5	53
12	Thermal properties of natural nanostructured hydroxyapatite extracted from fish bone waste. Journal of Applied Physics, 2007, 101, 084701.	2.5	52
13	Hydrocarbons from ethanol using [Fe,Al]ZSM-5 zeolites obtained by direct synthesis. Applied Catalysis A: General, 2006, 311, 193-198.	4.3	50
14	Characterization of thermo-optical and mechanical properties of calcium aluminosilicate glasses. Journal of Non-Crystalline Solids, 2006, 352, 3613-3617.	3.1	49
15	Microencapsulation by Freeze-Drying of Potassium Norbixinate and Curcumin with Maltodextrin: Stability, Solubility, and Food Application. Journal of Agricultural and Food Chemistry, 2013, 61, 955-965.	5.2	49
16	Soret effect and photochemical reaction in liquids with laser-induced local heating. Optics Express, 2011, 19, 4047.	3.4	47
17	A step forward toward smart white lighting: Combination of glass phosphor and light emitting diodes. Applied Physics Letters, 2009, 95, .	3.3	46
18	Thermal relaxation method to determine the specific heat of optical glasses. Journal of Non-Crystalline Solids, 2002, 304, 299-305.	3.1	43

#	ARTICLE	IF	Citations
19	Spectroscopic properties, concentration quenching, and laser investigations of Yb^3+-doped calcium aluminosilicate glasses. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 2510.	2.1	40
20	Real-time quantitative investigation of photochemical reaction using thermal lens measurements: Theory and experiment. Journal of Applied Physics, 2006, 100, 044906.	2.5	38
21	The temperature coefficient of the optical path length as a function of the temperature in different optical glasses. Journal of Non-Crystalline Solids, 2004, 348, 240-244.	3.1	37
22	Long Fluorescence Lifetime of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>Ti</mml:mi> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo> +</mml:mo> <low 027402.<="" 100,="" 2008,="" aluminosilicate="" calcium="" glass.="" letters,="" physical="" review="" silica="" td=""><td>∢/π8ml:mro</td><td>№6</td></low></mml:mrow></mml:msup></mml:math>	∢ /π8 ml:mro	№ 6
23	Thermal lens scanning of the glass transition in polymers. Journal of Applied Physics, 2001, 89, 2220-2226.	2.5	35
24	Study of the chemical interaction between a high-viscosity glass ionomer cement and dentin. Journal of Applied Oral Science, 2018, 26, e20170384.	1.8	32
25	On the application of the photoacoustic methods for the determination of thermo-optical properties of polymers. Brazilian Journal of Physics, 2002, 32, 483-494.	1.4	31
26	Thermo-optical characterization of tellurite glasses by thermal lens, thermal relaxation calorimetry and interferometric methods. Journal of Non-Crystalline Solids, 2006, 352, 3603-3607.	3.1	30
27	Thermal-lens study of photochemical reaction kinetics. Optics Letters, 2009, 34, 3460.	3.3	30
28	Spectroscopic assignments of mml="http://www.w3.org/1998/Math/MathML" display="inline"> < /a href="mailto:mml:mrow> < /a href=" mailto:mml:mrow=""> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> < /a> 		

#	Article	IF	Citations
37	Use of photoacoustic spectroscopy in the characterization of inclusion complexes of benzophenone-3-hydroxypropyl- \hat{l}^2 -cyclodextrin and ex vivo evaluation of the percutaneous penetration of sunscreen. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 449-457.	4.3	24
38	Challenges in luting fibre posts: Adhesion to the post and to the dentine. Dental Materials, 2018, 34, 1054-1062.	3.5	24
39	Luminescence and upconversion processes in <mml:math altimg="si0041.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>Er</mml:mi></mml:mrow><mml:mrow><mml:mn>3<td>ո<u>լ:3,1</u> ոլ:mn> < m</td><td>ml:mo>+</td></mml:mn></mml:mrow></mml:msup></mml:math>	ո <u>լ:3,1</u> ոլ:mn> < m	ml:mo>+
40	Resonant microwave cavity response of amorphous ribbons. Journal of Applied Physics, 1996, 79, 5462.	2.5	22
41	Thermal quenching of the fluorescence quantum efficiency in colquiriite crystals measured by thermal lens spectrometry. Journal of the Optical Society of America B: Optical Physics, 2004, 21, 1784.	2.1	21
42	The structure and optical dispersion of the refractive index of tellurite glass. Optical Materials, 2011, 33, 1569-1572.	3.6	21
43	Differential thermal lens temperature scanning approach to glass transition analysis in polymers: application to polycarbonate. Journal Physics D: Applied Physics, 2001, 34, 407-412.	2.8	20
44	Bioactivity and structural properties of nanostructured bulk composites containing Nb2O5 and natural hydroxyapatite. Journal of Applied Physics, 2013, 113, .	2.5	20
45	Fluorescence line narrowing and Judd-Ofelt theory analyses of <mml:math altimg="si0042.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>Eu</mml:mi></mml:mrow><mml:mrow><mml:mn>3low-silica calcium aluminosilicate glass and glass-ceramic. Journal of Luminescence, 2018, 201, 123-128.</mml:mn></mml:mrow></mml:msup></mml:math>	nl:311 nl:mn> <m< td=""><td>ml:mo>+</td></m<>	ml:mo>+
46	Enhanced and tunable white light emission from Ag nanoclusters and Eu ³⁺ -co-doped CaBAl glasses. RSC Advances, 2018, 8, 35263-35270.	3.6	20
47	The influence of SiO2 content on spectroscopic properties and laser emission efficiency of Yb3+-Er3+ co-doped calcium aluminosilicate glasses. Applied Physics B: Lasers and Optics, 2012, 107, 415-420.	2.2	19
48	Anisotropic magnetocaloric effect in ErGa2 and HoGa2 single-crystals. Journal of Alloys and Compounds, 2014, 582, 461-465.	5.5	19
49	Time resolved thermal lens in edible oils. Review of Scientific Instruments, 2003, 74, 694-696.	1.3	18
50	Observation of laser induced photochemical reaction of Cr(VI) species in water during thermal lens measurements. Chemical Physics Letters, 2004, 396, 221-225.	2.6	18
51	Thermal Characterization In Vitro of Human Nail: Photoacoustic Study of the Aging Process. Photochemistry and Photobiology, 2007, 83, 1144-1148.	2.5	18
52	Fricke xylenol gel characterization using a photoacustic technique. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 582, 484-488.	1.6	18
53	Concentration dependent fluorescence quantum efficiency of neodymium doped phosphate glass matrix. Journal of Luminescence, 2010, 130, 2491-2494.	3.1	18
54	Insulin complexation with hydroxypropyl-beta-cyclodextrin: Spectroscopic evaluation of molecular inclusion and use of the complex in gel for healing of pressure ulcers. International Journal of Pharmaceutics, 2015, 490, 229-239.	5.2	18

#	Article	IF	Citations
55	Thermal lens versus DTA measurements for glass transition analysis of fluoride glasses. Journal of Non-Crystalline Solids, 2002, 304, 315-321.	3.1	17
56	Band gap energy determination by photoacoustic spectroscopy under continuous light excitation. Applied Physics Letters, 2006, 89, 231926.	3.3	17
57	Eu2+-doped OHâ^' free calcium aluminosilicate glass: A phosphor for smart lighting. Journal of Luminescence, 2013, 143, 600-604.	3.1	17
58	Evaluation of TeO2 content on the optical and spectroscopic properties of Yb3+-doped calcium borotellurite glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 193, 212-218.	3.9	17
59	Effect of volume variation on the properties of the Kondo system(La1â^'xCex)3Al. Physical Review B, 1998, 57, 5900-5905.	3.2	16
60	Photoacoustic spectroscopy to evaluate the penetration of sunscreens into human skinin vivo: A statistic treatment. Review of Scientific Instruments, 2003, 74, 758-760.	1.3	16
61	Temperature dependence of fluorescence quantum efficiency of optical glasses determined by thermal lens spectrometry. Journal of Non-Crystalline Solids, 2002, 304, 244-250.	3.1	15
62	Study on the observation of Eu ²⁺ and Eu ³⁺ valence states in low silica calcium aluminosilicate glasses. Journal of Physics Condensed Matter, 2010, 22, 055601.	1.8	15
63	Morphological and Structural Changes in Lung Tissue Infected by <i>Paracoccidioides brasiliensis</i> : <scp> FTIR</scp> Photoacoustic Spectroscopy and Histological Analysis. Photochemistry and Photobiology, 2013, 89, 1170-1175.	2.5	15
64	<i>In situ</i> structural analysis of calcium aluminosilicate glasses under high pressure. Journal of Physics Condensed Matter, 2016, 28, 315402.	1.8	15
65	Thermal, optical and structural properties of relatively depolymerized sodium calcium silicate glass and glass-ceramic containing CaF2. Ceramics International, 2021, 47, 24966-24972.	4.8	15
66	Phonon–roton-like elementary excitations and low-temperature behaviour of non-crystalline solids. Philosophical Magazine, 2006, 86, 227-235.	1.6	14
67	Transport and magnetic properties of Ce2Niln3. Journal of Alloys and Compounds, 2007, 432, 34-38.	5.5	14
68	Study of the magnetocaloric properties of the antiferromagnetic compounds RGa2(R = Ce, Pr, Nd, Dy,) Tj ETQq0	0 0 rgBT /	Overlock 10 T
69	Thermal lens temperature scanning for quantitative measurements in complex fluids. Brazilian Journal of Physics, 2002, 32, 575-583.	1.4	13
70	Behavior of oxidation in the radiochromic gel dosimeter through photoacoustic technique measurements. Applied Radiation and Isotopes, 2007, 65, 605-609.	1.5	13
71	Thermal annealing effects on the magnetic behavior of Ce2NiSi3. Journal of Magnetism and Magnetic Materials, 2010, 322, 3192-3195.	2.3	13
72	Thermal diffusivity of periderm from tomatoes of different maturity stages as determined by the concept of the frequency-domain open photoacoustic cell. Journal of Applied Physics, 2011, 109, .	2.5	13

#	Article	IF	Citations
73	Time-resolved thermal lens determination of the thermo-optical coefficients in Nd-doped yttrium aluminum garnet as a function of temperature. Applied Physics Letters, 2004, 84, 5183-5185.	3.3	12
74	Time resolved thermal lens measurements of the thermo-optical properties of Nd2O3-doped low silica calcium aluminosilicate glasses down to 4.3K. Journal of Non-Crystalline Solids, 2008, 354, 574-579.	3.1	12
75	4,4â€~-Dithiodipyridine as a Bridging Ligand in Osmium and Ruthenium Complexes: The Electron Conductor Ability of the â~'Sâ~'Sâ~' Bridge#. Inorganic Chemistry, 2003, 42, 6898-6906.	4.0	11
76	Evaluation of the thermophysical properties of modified and dyed poly(ethylene terephthalate) films. Journal Physics D: Applied Physics, 2001, 34, 2248-2254.	2.8	10
77	The effect of porosity on thermal properties: towards a threshold of particle contact in sintered stainless steel. Journal of Physics Condensed Matter, 2005, 17, 1239-1249.	1.8	10
78	Application of the diffraction theory for photothermal deflection to the measurement of the temperature coefficient of the refractive index of a binary gas mixture. Journal of Applied Physics, 2006, 99, 103107.	2.5	10
79	Nd3+ doped CAS glasses: A thermo-optical and spectroscopic investigation. Optical Materials, 2014, 37, 531-536.	3.6	10
80	Evaluation of photosensitizer penetration into sound and decayed dentin: A photoacoustic spectroscopy study. Photodiagnosis and Photodynamic Therapy, 2018, 21, 108-114.	2.6	10
81	High pressure effect on the short- and intermediate-range structure of depolymerized soda lime silicate glass: Insights from micro-Raman spectroscopy. Vibrational Spectroscopy, 2020, 110, 103113.	2.2	10
82	Evolution of the electronic specific heat of (La1â^'xCex)3Al. Journal of Applied Physics, 1997, 81, 4179-4181.	2.5	9
83	Temperature dependence of the Cr3+site axial distortion in LiSrAlF6and LiSrGaF6single crystals. Journal of Physics Condensed Matter, 2001, 13, 8435-8443.	1.8	9
84	Photoacoustic spectroscopy to evaluate the penetration rate of three different sunscreens into human skin in vivo. European Physical Journal Special Topics, 2005, 125, 757-759.	0.2	9
85	On the microscopic mechanism for the stabilization of structural and ferroic states in displacive multiferroics. Journal of Applied Physics, 2013, 113, 114105.	2.5	9
86	The phase-resolved photoacoustic method to indicate chemical assignments of paracetamol. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 121, 719-723.	3.9	9
87	Development of a technique for psyllium husk mucilage purification with simultaneous microencapsulation of curcumin. PLoS ONE, 2017, 12, e0182948.	2.5	9
88	Magnetic phase diagram of U(Ga1â^'xCux)2. Journal of Magnetism and Magnetic Materials, 2001, 226-230, 1312-1314.	2.3	8
89	Unusual behavior of the Kondo temperature ofLa1â^'xYbxCu3Al2. Physical Review B, 2001, 63, .	3.2	8
90	Photoacoustic study of cross-linking process in grafted polymer and copolymer based on ethylene and vinyltrimethoxy silane. Journal Physics D: Applied Physics, 2002, 35, 3240-3248.	2.8	8

#	Article	IF	CITATIONS
91	Study of cross-linking process in grafted polyethylene and ethylene based copolymer using a phase resolved photoacoustic method. Review of Scientific Instruments, 2003, 74, 325-327.	1.3	8
92	Thermo Optical Properties of Transparent PLZT 10/65/35 Ceramics. Ferroelectrics, 2006, 336, 191-196.	0.6	8
93	Evaluation of the thermal diffusivity of vegetable oils during frying by Thermal Lens Spectrometry. European Physical Journal: Special Topics, 2008, 153, 531-534.	2.6	8
94	High values of gain cross section and luminescence quantum efficiency in OH^â^'-free Ti^3+-doped low-silica calcium aluminosilicate glass. Optics Letters, 2010, 35, 1055.	3.3	8
95	Heat flow measurements and the order of the magnetic transition in (Dy,Gd)Co2 solid solutions. Journal of Alloys and Compounds, 2012, 513, 615-619.	5.5	8
96	Determination of electron paramagnetic resonance parameters for osmium(III) low-spin systems using graphical solutions. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 2105-2111.	1.7	7
97	Change of the Kondo regime inCePd2Al3induced by chemical substitution: Verification of the Doniach diagram. Physical Review B, 1999, 59, 8738-8744.	3.2	7
98	Photoacoustic study of PET films and fibers dyed in supercritical CO2 reactor. Review of Scientific Instruments, 2003, 74, 328-330.	1.3	7
99	Magnetization and specific heat in U1â^'xLaxGa2 and magnetocaloric effect in UGa2. Journal of Applied Physics, 2005, 97, 10A921.	2.5	7
100	Statistical Design of Experiments: Study of Cross-Linking Process through the Phase-Resolved Photoacoustic Method as a Multivariable Response. Applied Spectroscopy, 2005, 59, 173-180.	2.2	7
101	Temperature and wavelength dependence of the thermo-optical properties of tellurite and chalcogenide glasses. Journal of Applied Physics, 2007, 102, 073507.	2.5	7
102	Angular dependence of the thermal-lens effect on LiSrAlF_6 and LiSrGaF_6 single crystals. Optics Letters, 2008, 33, 1720.	3.3	7
103	Thermal lens and interferometric method for glass transition and thermo physical properties measurements in Nd_2O_3 doped sodium zincborate glass. Optics Express, 2008, 16, 21248.	3.4	7
104	Inversion in the temperature coefficient of the optical path length close to the glass transition temperature in tellurite glasses. Applied Physics Letters, 2009, 94, .	3.3	7
105	Composition Influence on the Thermo-optical Properties and Luminescence Efficiency of Europium-Doped Calcium Aluminosilicate Glasses. International Journal of Thermophysics, 2013, 34, 1666-1672.	2.1	7
106	Laser-induced lensing effects in solid-state optical refrigerators. Applied Physics Letters, 2013, 102, .	3.3	7
107	On the use of photothermal techniques to study NiTi phase transitions. Materials Research Express, 2014, 1, 026502.	1.6	7
108	Production of hydrogen from bioethanol in Cu–Ni/NbxOy catalysts obtained by different preparation methods. International Journal of Hydrogen Energy, 2016, 41, 8111-8119.	7.1	7

#	Article	IF	CITATIONS
109	Chemical, Thermal, and Spectroscopic Analysis of Organomineral Fertilizer Residue Recovered from an Oxisol. Soil Science Society of America Journal, 2019, 83, 409-418.	2.2	7
110	The photoacoustic spectroscopy applied in the characterization of the cross-linking process in polymeric materials. Brazilian Journal of Physics, 2002, 32, 523-530.	1.4	6
111	Human nail thermal diffusivity obtained using the open photoacoustic cell technique. European Physical Journal Special Topics, 2005, 125, 657-660.	0.2	6
112	Influence of temperature and excitation procedure on the athermal behavior of Nd3+-doped phosphate glass: Thermal lens, interferometric, and calorimetric measurements. Journal of Applied Physics, 2009, 106, .	2.5	6
113	Investigation of doped calcium aluminosilicate glass: A coupling between thermal-expansion and thermal-diffusion models for assessment of nonradiative relaxation time and characteristic diffusion time. Journal of Applied Physics, 2009, 106, .	2.5	6
114	Correlation between Histopathological and FT-Raman Spectroscopy Analysis of the Liver of Swiss Mice Infected with Paracoccidioides brasiliensis. PLoS ONE, 2014, 9, e106256.	2.5	6
115	Inermoelastic properties across martensitic transformation of Nikmmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e134" altimg="si4.svg">kmml:msub>kmml:mrow / kmml:mrow	2.7	6
116	Molecular insight on the binding of stevia glycosides to bovine serum albumin. Chemico-Biological Interactions, 2021, 344, 109526.	4.0	6
117	Photoacoustic and photothermal and the photovoltaic efficiency of solar cells: A tutorial. Journal of Applied Physics, 2022, 131, .	2.5	6
118	Monitoring the depth penetration of dyes in poly (ethylene terephthalate) films using a two layer based photoacoustic model. Brazilian Journal of Physics, 2002, 32, 516-522.	1.4	5
119	Low temperature specific heat of doped and undoped glasses. Journal of Non-Crystalline Solids, 2006, 352, 3572-3576.	3.1	5
120	Combination of Histopathology and FTâ€Raman Spectroscopy for the Study of Experimental Paracoccidioidomycosis in the Spleen. Photochemistry and Photobiology, 2018, 94, 88-94.	2.5	5
121	Transport and thermodynamic properties of YblnNi4â^'xCux system. Journal of Magnetism and Magnetic Materials, 2001, 226-230, 72-74.	2.3	4
122	Photoacoustic spectroscopy for monitoring the dyeing process of poly(ethylene terephthalate). Analyst, The, 2002, 127, 310-314.	3.5	4
123	Thermal lens temperature scanning for quantitative measurements in transparent materials (invited). Review of Scientific Instruments, 2003, 74, 291-296.	1.3	4
124	Thermo-optical properties measurements in chalcogenide glasses using thermal relaxation and thermal lens methods. Journal of Non-Crystalline Solids, 2004, 348, 108-112.	3.1	4
125	Open Photoacoustic Cell study of thermal diffusivity of Nafion \hat{A}^{\otimes} as a function of water content. European Physical Journal Special Topics, 2005, 125, 383-386.	0.2	4
126	A new approach to marine fish otoliths study: electron paramagnetic resonance. Journal of the Marine Biological Association of the United Kingdom, 2013, 93, 1973-1980.	0.8	4

#	Article	IF	CITATIONS
127	Zinc oxide composites prepared by in situ process: UV barrier and luminescence properties. Materials Letters, 2014, 125, 75-77.	2.6	4
128	Glass frits as an enabler in the production process of OHâ^'-free calcium aluminosilicate glasses. Journal of Alloys and Compounds, 2020, 816, 152651.	5.5	4
129	Design of Nanostructured Lipid Carriers Containing Cymbopogon martinii (Palmarosa) Essential Oil against Aspergillus nomius. Molecules, 2021, 26, 4825.	3.8	4
130	Thin-film of Nd ³⁺ –Yb ³⁺ co-doped low silica calcium aluminosilicate glass grown by a laser deposition technique. Journal of Applied Physics, 2022, 131, 055304.	2.5	4
131	Transition from Kondo to intermediate valence regime in : an ESR study. Journal of Physics Condensed Matter, 1998, 10, 9763-9768.	1.8	3
132	Magnetic properties of U(Ga1â^'xMx)2 with M=Cu, Al and Ge. Physica B: Condensed Matter, 2002, 312-313, 906-908.	2.7	3
133	A study of pressure and chemical substitution effects on the magnetocaloric properties of the ferromagnetic compound UGa ₂ . Journal of Physics Condensed Matter, 2009, 21, 276001.	1.8	3
134	Thermal mirror and thermal lens techniques for semitransparent material characterization. Journal of Physics: Conference Series, 2010, 214, 012016.	0.4	3
135	On the induction of homogeneous bulk crystallization in Eu-doped calcium aluminosilicate glass by applying simultaneous high pressure and temperature. Journal of Applied Physics, 2016, 119, 245901.	2.5	3
136	Effect of magnetic coupling on non-radiative relaxation time of Fe3+ sites on LaAllâ^'xFexO3 pigments. Journal of Applied Physics, 2018, 123, 075101.	2.5	3
137	Kondo temperature and Heavy Fermion behavior in Yb1â^'xYxCuAl series of alloys. Physica B: Condensed Matter, 2018, 536, 176-181.	2.7	3
138	Eu2+-Nd3+ co-doped glasses for solar spectrum modification via NUV/visible to NIR downconversion. Journal of Alloys and Compounds, 2021, 888, 161484.	5.5	3
139	Analytical method to estimate resin cement diffusion into dentin. Journal of Biomedical Optics, 2016, 21, 055003.	2.6	3
140	Magnetic properties of the U(Ge1â^'xNix)2 system. Journal of Applied Physics, 2003, 93, 7825-7827.	2.5	2
141	Magnetic properties of the U1â^'La Pd2Ga3 series of compounds. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1-E3.	2.3	2
142	Effect of the chemical substitution on the magnetic properties of UGe2. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E11-E12.	2.3	2
143	Photoacoustic Characterization of PC/PMMA blends doped with Eu(acac)3. European Physical Journal Special Topics, 2005, 125, 387-390.	0.2	2
144	Temperature dependence of the thermo-optical properties of KDP single crystal measured by thermal relaxation and thermal lens methods. European Physical Journal Special Topics, 2005, 125, 391-394.	0.2	2

#	Article	IF	CITATIONS
145	Evidence of mixed valence in single crystals. Physica B: Condensed Matter, 2008, 403, 946-947.	2.7	2
146	Magnetic properties of (Ce 1â^' x La x)PdIn 2. Physica B: Condensed Matter, 2009, 404, 3018-3020.	2.7	2
147	Electrical field dependence of thermo-optical parameters in transparent lead lanthanum zirconated titanate ceramic: Thermal lens measurements. Journal of Applied Physics, 2011, 110, 123517.	2.5	2
148	Temperature dependence of the thermophysical properties of Neodymium doped borate glasses. Optical Materials, 2011, 33, 1563-1568.	3.6	2
149	Study of keratin hair of domestic cat under methionine and cystine experimental diet using FT-Raman spectroscopy. Vibrational Spectroscopy, 2019, 100, 1-5.	2.2	2
150	Exchange parameter estimation and spin fluctuation time behavior in (La1â^'Ce)3Al. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 1141-1142.	2.3	1
151	ESR of Gd3+ in Y1â^'xâ^'yYbxGdyInNi4. Journal of Magnetism and Magnetic Materials, 2001, 226-230, 77-79.	2.3	1
152	Microstructure effects on the thermal properties of vacuum sintered AISI 316L stainless steel. Review of Scientific Instruments, 2003, 74, 716-718.	1.3	1
153	Photoacoustic response in a multivariable dyeing process: Comparison between conventional aqueous and supercritical CO2used for impregnating PET films. European Physical Journal Special Topics, 2005, 125, 613-615.	0.2	1
154	Time resolved thermal lens measurements of the thermo-optical properties of glasses at low temperature down to 20K. , 0, , .		1
155	Study of anisotropy in the temperature coefficient of the optical path length of axial single crystals using an interferometric technique. Journal Physics D: Applied Physics, 2008, 41, 245406.	2.8	1
156	A utilização da técnica de lente térmica para a análise das propriedades térmicas de materiais transparentes. Ceramica, 2009, 55, 337-340.	0.8	1
157	A Step Forward Towards Smart White Lighting: Combination of Glass Phosphor and Blue LEDs. ECS Transactions, 2009, 25, 237-246.	0.5	1
158	Photoacoustic methods for in vitro study of kinetics progesterone release from the biodegradation of polyhydroxybutyrate/polycaprolactone used as intravaginal devices. Applied Physics Letters, 2013, 103, .	3.3	1
159	Studies of the early stages of the dynamic setting process of chemically activated restorative glass-ionomer cements. Biomaterial Investigations in Dentistry, 2021, 8, 39-47.	1.8	1
160	Opalescence and color stability of composite resins: an in vitro longitudinal study. Clinical Oral Investigations, 2022, 26, 2635-2643.	3.0	1
161	Magnetic resonance in PdFe alloys near Tc. Journal of Applied Physics, 1994, 75, 7125-7127.	2.5	0
162	<title>Thermal lens study of the fluorescence thermal quenching in Cr<formula><sup><roman>3+</roman></sup></formula>-doped fluoride crystals</title> ., 2001, 4419, 138.		0

#	Article	lF	CITATIONS
163	Influence of probe beam multi-reflection on thermal lens measurements: Application to Nd:YAG rods. European Physical Journal Special Topics, 2005, 125, 189-191.	0.2	0
164	Thermo-optical properties of iron-doped low silica calcium aluminosilicate glasses determined by photothermal methods. European Physical Journal Special Topics, 2005, 125, 197-199.	0.2	0
165	Photoacoustic spectroscopy and thermal relaxation method to evaluate corn moisture content. European Physical Journal Special Topics, 2005, 125, 857-860.	0.2	0
166	Optimization of dying variables in PET: Using thermal diffusivity response as a probe in a multivariable algorithm. European Physical Journal Special Topics, 2005, 125, 573-576.	0.2	0
167	Temperature dependence of the thermo-optical properties in fragile Tellurite glasses. , 0, , .		0
168	Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement. Journal of Applied Physics, 2013, 114, 194701.	2.5	0
169	Effective Thermal Diffusivity Study of Powder Biocomposites via Photoacoustic Method. Brazilian Journal of Physics, 2015, 45, 525-531.	1.4	0
170	Thermal properties and crystallization mechanism of undoped and Nd\$\$^{3+}\$\$-doped \$\$hbox {SiO}_2\$\$â€"\$\$hbox {Al}_2hbox {O}_3\$\$â€"CaOâ€"MgO glasses. Journal of Thermal Analysis and Calorimetry, 2020, 140, 275-282.	3.6	0
171	DSC analysis and evaluation of forces released on deactivation of 0.40-mm (0.016") orthodontic thermo-activated NiTi wires: An in vitro study. Journal of Dental Research, Dental Clinics, Dental Prospects, 2020, 14, 12-18.	1.0	0
172	Technique for Darkening of Extracted Teeth Simulating Pulpal Necrosis Discoloration. Clinical, Cosmetic and Investigational Dentistry, 2022, Volume 14, 103-112.	1.6	0