
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8561630/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture–on-chip (4C). Nature Genetics, 2006, 38, 1348-1354.	9.4	1,219
2	InÂVivo Imaging Reveals Extracellular Vesicle-Mediated Phenocopying of Metastatic Behavior. Cell, 2015, 161, 1046-1057.	13.5	704
3	The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension. Cell, 2017, 169, 693-707.e14.	13.5	636
4	A decade of 3C technologies: insights into nuclear organization. Genes and Development, 2012, 26, 11-24.	2.7	631
5	A Single Oncogenic Enhancer Rearrangement Causes Concomitant EVI1 and GATA2 Deregulation in Leukemia. Cell, 2014, 157, 369-381.	13.5	571
6	Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nature Genetics, 2006, 38, 1005-1014.	9.4	540
7	CTCF Binding Polarity Determines Chromatin Looping. Molecular Cell, 2015, 60, 676-684.	4.5	537
8	eRNAs Are Required for p53-Dependent Enhancer Activity and Gene Transcription. Molecular Cell, 2013, 49, 524-535.	4.5	484
9	Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nature Methods, 2012, 9, 969-972.	9.0	357
10	Prospero Acts as a Binary Switch between Self-Renewal and Differentiation in DrosophilaÂNeuralÂStem Cells. Developmental Cell, 2006, 11, 775-789.	3.1	348
11	Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nature Genetics, 2006, 38, 694-699.	9.4	335
12	Limitations and possibilities of small RNA digital gene expression profiling. Nature Methods, 2009, 6, 474-476.	9.0	280
13	The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes and Development, 2011, 25, 1371-1383.	2.7	278
14	The structural basis for cohesin–CTCF-anchored loops. Nature, 2020, 578, 472-476.	13.7	278
15	Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity. Cell Reports, 2016, 14, 2281-2288.	2.9	273
16	The pluripotent genome in three dimensions is shaped around pluripotency factors. Nature, 2013, 501, 227-231.	13.7	236
17	Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. Nature Biotechnology, 2014, 32, 1019-1025.	9.4	231
18	4C Technology: Protocols and Data Analysis. Methods in Enzymology, 2012, 513, 89-112.	0.4	203

#	Article	IF	CITATIONS
19	Determining long-range chromatin interactions for selected genomic sites using 4C-seq technology: From fixation to computation. Methods, 2012, 58, 221-230.	1.9	198
20	Enhancer hubs and loop collisions identified from single-allele topologies. Nature Genetics, 2018, 50, 1151-1160.	9.4	189
21	Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming. Cell Stem Cell, 2016, 18, 597-610.	5.2	187
22	Hotspots of transcription factor colocalization in the genome of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12027-12032.	3.3	182
23	High-throughput identification of human SNPs affecting regulatory element activity. Nature Genetics, 2019, 51, 1160-1169.	9.4	157
24	Distinct HP1 and Su(var)3-9 complexes bind to sets of developmentally coexpressed genes depending on chromosomal location. Genes and Development, 2003, 17, 2825-2838.	2.7	153
25	Chromosome-wide gene-specific targeting of the Drosophila dosage compensation complex. Genes and Development, 2006, 20, 858-870.	2.7	142
26	Human heterochromatin proteins form large domains containing KRAB-ZNF genes. Genome Research, 2006, 16, 1493-1504.	2.4	141
27	Variegated gene expression caused by cell-specific long-range DNA interactions. Nature Cell Biology, 2011, 13, 944-951.	4.6	133
28	3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science, 2021, 372, 984-989.	6.0	132
29	Systemic Loss and Gain of Chromatin Architecture throughout Zebrafish Development. Cell Reports, 2018, 24, 1-10.e4.	2.9	124
30	The ChAHP Complex Counteracts Chromatin Looping at CTCF Sites that Emerged from SINE Expansions in Mouse. Cell, 2019, 178, 1437-1451.e14.	13.5	118
31	Discovery and validation of sub-threshold genome-wide association study loci using epigenomic signatures. ELife, 2016, 5, .	2.8	115
32	High-Resolution Mapping Reveals Links of HP1 with Active and Inactive Chromatin Components. PLoS Genetics, 2007, 3, e38.	1.5	113
33	DNA methylation dynamics during intestinal stem cell differentiation reveals enhancers driving gene expression in the villus. Genome Biology, 2013, 14, R50.	13.9	109
34	Repertoire and evolution of miRNA genes in four divergent nematode species. Genome Research, 2009, 19, 2064-2074.	2.4	107
35	Genomeâ€wide analysis of FOXO3 mediated transcription regulation through RNA polymerase II profiling. Molecular Systems Biology, 2013, 9, 638.	3.2	104
36	WAPL maintains a cohesin loading cycle to preserve cell-type-specific distal gene regulation. Nature Genetics, 2021, 53, 100-109.	9.4	101

#	Article	IF	CITATIONS
37	Genome-wide HP1 binding in Drosophila: Developmental plasticity and genomic targeting signals. Genome Research, 2005, 15, 1265-1273.	2.4	94
38	CTCF: a Swiss-army knife for genome organization and transcription regulation. Essays in Biochemistry, 2019, 63, 157-165.	2.1	87
39	Quantitative comparison of cDNA-AFLP, microarrays, and genechip expression data in Saccharomyces cerevisiae. Genomics, 2003, 82, 606-618.	1.3	80
40	Transcription of Mammalian cis-Regulatory Elements Is Restrained by Actively Enforced Early Termination. Molecular Cell, 2015, 60, 460-474.	4.5	80
41	Sensitive Monogenic Noninvasive Prenatal Diagnosis by Targeted Haplotyping. American Journal of Human Genetics, 2017, 101, 326-339.	2.6	76
42	Global Chromatin Domain Organization of the Drosophila Genome. PLoS Genetics, 2008, 4, e1000045.	1.5	72
43	Small RNA expression and strain specificity in the rat. BMC Genomics, 2010, 11, 249.	1.2	71
44	Characterization and dynamics of pericentromere-associated domains in mice. Genome Research, 2015, 25, 958-969.	2.4	70
45	High-Affinity Sites Form an Interaction Network to Facilitate Spreading of the MSL Complex across the X Chromosome in Drosophila. Molecular Cell, 2015, 60, 146-162.	4.5	70
46	peakC: a flexible, non-parametric peak calling package for 4C and Capture-C data. Nucleic Acids Research, 2018, 46, e91-e91.	6.5	63
47	The bipartite TAD organization of the X-inactivation center ensures opposing developmental regulation of Tsix and Xist. Nature Genetics, 2019, 51, 1024-1034.	9.4	60
48	Hi-C analyses with GENOVA: a case study with cohesin variants. NAR Genomics and Bioinformatics, 2021, 3, Iqab040.	1.5	59
49	SUUR joins separate subsets of PcG, HP1 and B-type lamin targets in <i>Drosophila</i> . Journal of Cell Science, 2007, 120, 2344-2351.	1.2	54
50	Chromatin domains in higher eukaryotes: insights from genome-wide mapping studies. Chromosoma, 2009, 118, 25-36.	1.0	49
51	HP1 controls genomic targeting of four novel heterochromatin proteins in Drosophila. EMBO Journal, 2007, 26, 741-751.	3.5	48
52	LncRNA-OIS1 regulates DPP4 activation to modulate senescence induced by RAS. Nucleic Acids Research, 2018, 46, 4213-4227.	6.5	40
53	Distinct Roles for Condensin's Two ATPase Sites in Chromosome Condensation. Molecular Cell, 2019, 76, 724-737.e5.	4.5	39
54	TADs as the Caller Calls Them. Journal of Molecular Biology, 2020, 432, 638-642.	2.0	38

#	Article	IF	CITATIONS
55	Glucocorticoid receptor triggers a reversible drug-tolerant dormancy state with acquired therapeutic vulnerabilities in lung cancer. Nature Communications, 2021, 12, 4360.	5.8	35
56	Complete knockout of the nociceptin/orphanin FQ receptor in the rat does not induce compensatory changes in μ, δ and κ opioid receptors. Neuroscience, 2009, 163, 308-315.	1.1	34
57	The histone methyltransferase DOT1L prevents antigen-independent differentiation and safeguards epigenetic identity of CD8 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20706-20716.	3.3	32
58	Histone methyltransferase DOT1L controls stateâ€specific identity during B cell differentiation. EMBO Reports, 2021, 22, e51184.	2.0	27
59	The cohesin acetylation cycle controls chromatin loop length through a PDS5A brake mechanism. Nature Structural and Molecular Biology, 2022, 29, 586-591.	3.6	27
60	A CRISPR-Cas9 screen identifies essential CTCF anchor sites for estrogen receptor-driven breast cancer cell proliferation. Nucleic Acids Research, 2019, 47, 9557-9572.	6.5	21
61	A Mediator-cohesin axis controls heterochromatin domain formation. Nature Communications, 2022, 13, 754.	5.8	17
62	A natural WNT signaling variant potently synergizes with Cdkn2ab loss in skin carcinogenesis. Nature Communications, 2019, 10, 1425.	5.8	13
63	A transient absence of SMC-mediated loops after mitosis. Nature Cell Biology, 2019, 21, 1303-1304.	4.6	11
64	Developing landscapes: genome architecture during early embryogenesis. Current Opinion in Genetics and Development, 2019, 55, 39-45.	1.5	10
65	Capturing heterogeneity: single-cell structures of the 3D genome. Nature Structural and Molecular Biology, 2017, 24, 437-438.	3.6	8
66	Unexpected gene activation following CRISPR as9â€mediated genome editing. EMBO Reports, 2022, 23, e53902.	2.0	5
67	Quantitative analysis of chromatin interaction changes upon a 4.3 Mb deletion at mouse 4E2. BMC Genomics, 2015, 16, 982.	1.2	2
68	Gene Regulation Knows Its Boundaries. Trends in Genetics, 2019, 35, 883-885.	2.9	2