Oliver H Heckl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8559700/publications.pdf

Version: 2024-02-01

57 papers	2,126 citations	218677 26 h-index	35 g-index
58	58	58	1513
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mid-infrared interference coatings with excess optical loss below 10  ppm. Optica, 2021, 8, 686.	9.3	29
2	Simple Approach for Ambiguity-Free Dual-Comb Ranging Using an Intrinsically Modulated Single-Cavity Laser Source. , 2021, , .		0
3	Simple approach for extending the ambiguity-free range of dual-comb ranging. Optics Letters, 2021, 46, 3677.	3.3	8
4	Compact, All-PM Fiber Integrated and Alignment-Free Ultrafast Yb: Fiber NALM Laser With Sub-Femtosecond Timing Jitter. Journal of Lightwave Technology, 2021, 39, 4431-4438.	4.6	36
5	Flexible all-PM NALM Yb:fiber laser design for low-noise frequency comb applications and single-cavity dual-comb generation. EPJ Web of Conferences, 2020, 243, 04001.	0.3	0
6	Flexible all-PM NALM Yb:fiber laser design for frequency comb applications: operation regimes and their noise properties. Optics Express, 2020, 28, 18946.	3.4	73
7	Versatile Figure-9 Design: How to Access Low-Noise Regimes in an All-PM Yb:Fiber Laser. , 2020, , .		0
8	Compact, alignment-free, environmentally stable dispersion compensated femtosecond Yb-fiber oscillator. , 2020, , .		3
9	High-Performance Mid-Infrared Crystalline Bragg Mirrors at 4.5 \hat{l} 4m. , 2019, , .		0
10	All-Polarization-Maintaining Dual-Color/Dual-Comb Yb:Fiber Laser. , 2019, , .		1
11	Tunable dual-color operation of Yb:fiber laser via mechanical spectral subdivision. Optics Express, 2019, 27, 5478.	3.4	29
12	Near-infrared scanning cavity ringdown for optical loss characterization of supermirrors. Optics Express, 2019, 27, 19141.	3.4	5
13	Tunable dual-comb from an all-polarization-maintaining single-cavity dual-color Yb:fiber laser. Optics Express, 2019, 27, 28062.	3.4	42
14	Tunable all-polarization-maintaining single-cavity dual-color/dual-comb from an Yb:fiber laser. , 2019, , .		0
15	High-Performance Mid-Infrared Crystalline Bragg Mirrors at 4.5 Âμm. , 2019, , .		0
16	High-Performance Mid-Infrared Crystalline Bragg Mirrors at 4.5 µm. , 2019, , .		1
17	Phase-stabilized 100ÂmW frequency comb near 10Âμm. Applied Physics B: Lasers and Optics, 2018, 124, 128.	2.2	29
18	OD + CO \hat{a}^{\dagger} D + CO2 branching kinetics probed with time-resolved frequency comb spectroscopy. Chemical Physics Letters, 2017, 683, 91-95.	2.6	8

#	Article	IF	CITATIONS
19	Mid-infrared crystalline supermirrors with ultralow optical absorption (Conference Presentation). , 2017, , .		0
20	High-performance near- and mid-infrared crystalline coatings. Optica, 2016, 3, 647.	9.3	132
21	Continuous probing of cold complex molecules with infrared frequency comb spectroscopy. Nature, 2016, 533, 517-520.	27.8	92
22	Three-photon absorption in optical parametric oscillators based on OP-GaAs. Optics Letters, 2016, 41, 5405.	3.3	25
23	Direct frequency comb measurement of OD + CO â†' DOCO kinetics. Science, 2016, 354, 444-448.	12.6	86
24	Low-loss crystalline coatings for the near- and mid-infrared. , 2016, , .		1
25	Industry-grade high average power femtosecond light source. Proceedings of SPIE, 2014, , .	0.8	0
26	Yb-doped mixed sesquioxides for ultrashort pulse generation in the thin disk laser setup. Applied Physics B: Lasers and Optics, 2013, 113, 13-18.	2.2	52
27	Cutting-Edge High-Power Ultrafast Thin Disk Oscillators. Applied Sciences (Switzerland), 2013, 3, 355-395.	2.5	32
28	Beam delivery and pulse compression to sub-50 fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber. Optics Express, 2013, 21, 4986.	3.4	97
29	SESAM designs for ultrafast lasers. , 2013, , .		1
30	Lasers and applications in parts cleaning and surface pre-treatment. Proceedings of SPIE, 2013, , .	0.8	1
31	Ultrafast disk technology enables next generation micromachining laser sources., 2013,,.		3
32	Ultrafast thin disk lasers: sub-100 fs pulse duration and carrier envelope offset detection. EPJ Web of Conferences, 2013, 41, 10009.	0.3	0
33	Self-referenceable frequency comb from an ultrafast thin disk laser. Optics Express, 2012, 20, 9650.	3.4	39
34	Frontiers in passively mode-locked high-power thin disk laser oscillators. Optics Express, 2012, 20, 7054.	3.4	57
35	275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment. Optics Express, 2012, 20, 23535.	3.4	191
36	SESAMs for high-power femtosecond modelocking: power scaling of an Yb:LuScO3 thin disk laser to 23 W and 235 fs. Proceedings of SPIE, 2012, , .	0.8	0

3

#	Article	IF	Citations
37	Perfect Precision in Industrial Micro Machining. Laser Technik Journal, 2012, 9, 42-47.	0.2	2
38	SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 29-41.	2.9	128
39	Sub-100 femtosecond pulses from a SESAM modelocked thin disk laser. Applied Physics B: Lasers and Optics, 2012, 106, 559-562.	2.2	54
40	Pulse compression of a high-power thin disk laser using rod-type fiber amplifiers. Optics Express, 2011, 19, 1395.	3 . 4	34
41	Temporal pulse compression in a xenon-filled Kagome-type hollow-core photonic crystal fiber at high average power. Optics Express, 2011, 19, 19142.	3.4	57
42	SESAMs for high-power femtosecond modelocking: power scaling of an Yb:LuScO_3 thin disk laser to 23 W and 235 fs. Optics Express, 2011, 19, 20288.	3.4	54
43	Yb-doped ultrafast thin disk lasers. , 2011, , .		O
44	Thermal analysis and efficient high power continuous-wave andÂmode-locked thin disk laser operation of Yb-doped sesquioxides. Applied Physics B: Lasers and Optics, 2011, 102, 509-514.	2.2	107
45	Rod-type fiber amplifier for pulse compression of high power thin-disk lasers. , 2011, , .		O
46	High damage threshold SESAMs for high power femtosecond modelocking: 23 W, 235 fs Yb:LuScO <inf>3</inf> thin-disk laser. , 2011, , .		0
47	Continuous-wave and modelocked Yb:YCOB thin disk laser: first demonstration and future prospects. Optics Express, 2010, 18, 19201.	3.4	61
48	Femtosecond thin-disk laser with 141 W of average power. Optics Letters, 2010, 35, 2302.	3.3	173
49	High harmonic generation (HHG) in a Kagome-type hollow-core photonic crystal fiber (HC-PCF). , 2009, ,		O
50	High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation. Applied Physics B: Lasers and Optics, 2009, 97, 281-295.	2.2	164
51	High harmonic generation in a gas-filled hollow-core photonic crystal fiber. Applied Physics B: Lasers and Optics, 2009, 97, 369-373.	2.2	93
52	Femtosecond Yb:Lu_2O_3 thin disk laser with 63 W of average power. Optics Letters, 2009, 34, 2823.	3.3	54
53	227-fs pulses from a mode-locked†Yb:LuScO_3 thin disk laser. Optics Express, 2009, 17, 10725.	3.4	50
54	63-W average power from femtosecond Yb:Lu <inf>2</inf> O <inf>3</inf> thin disk laser., 2009,,.		1

OLIVER H HECKL

#	Article	IF	CITATIONS
55	227-fs pulses from a mode-locked Yb:LuScO <inf>3</inf> thin disk laser., 2009,,.		O
56	EELS analysis of internal metal – oxide interfaces. International Journal of Materials Research, 2008, 99, 496-501.	0.3	3
57	Comparison of two low-noise CEO frequencystabilization methods foran all-PM Yb:fiber NALM oscillator. OSA Continuum, 0, , .	1.8	1