Todd M Brusko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8559598/publications.pdf

Version: 2024-02-01

116 papers 8,347 citations

45 h-index 87 g-index

125 all docs 125 docs citations

125 times ranked 10121 citing authors

#	Article	IF	CITATIONS
1	Normalization of CD4 ⁺ T cell metabolism reverses lupus. Science Translational Medicine, 2015, 7, 274ra18.	12.4	502
2	Heme Oxygenase-1 Modulates Early Inflammatory Responses. American Journal of Pathology, 2004, 165, 1045-1053.	3.8	393
3	Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nature Genetics, 2007, 39, 1074-1082.	21.4	380
4	Plasticity of Human Regulatory T Cells in Healthy Subjects and Patients with Type 1 Diabetes. Journal of Immunology, 2011, 186, 3918-3926.	0.8	376
5	A functional variant of SUMO4, a new $\hat{l}^{\text{B}}\hat{l}^{\pm}$ modifier, is associated with type 1 diabetes. Nature Genetics, 2004, 36, 837-841.	21.4	369
6	Functional Defects and the Influence of Age on the Frequency of CD4+CD25+ T-Cells in Type 1 Diabetes. Diabetes, 2005, 54, 1407-1414.	0.6	344
7	Expansion of Human Regulatory T-Cells From Patients With Type 1 Diabetes. Diabetes, 2009, 58, 652-662.	0.6	333
8	Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunological Reviews, 2008, 223, 371-390.	6.0	331
9	Introducing the Endotype Concept to Address the Challenge of Disease Heterogeneity in Type 1 Diabetes. Diabetes Care, 2020, 43, 5-12.	8.6	220
10	Divergent Phenotypes of Human Regulatory T Cells Expressing the Receptors TIGIT and CD226. Journal of Immunology, 2015, 195, 145-155.	0.8	219
11	No Alterations in the Frequency of FOXP3+ Regulatory T-Cells in Type 1 Diabetes. Diabetes, 2007, 56, 604-612.	0.6	214
12	SARS-CoV-2 infection generates tissue-localized immunological memory in humans. Science Immunology, 2021, 6, eabl9105.	11.9	147
13	Radial Artery Tonometry Demonstrates Arterial Stiffness in Children With Type 1 Diabetes. Diabetes Care, 2004, 27, 2911-2917.	8.6	141
14	Anti-thymocyte globulin/G-CSF treatment preserves \hat{l}^2 cell function in patients with established type 1 diabetes. Journal of Clinical Investigation, 2015, 125, 448-455.	8.2	140
15	Human Antigen-Specific Regulatory T Cells Generated by T Cell Receptor Gene Transfer. PLoS ONE, 2010, 5, e11726.	2.5	139
16	Autologous umbilical cord blood infusion for type 1 diabetes. Experimental Hematology, 2008, 36, 710-715.	0.4	136
17	Human Treg responses allow sustained recombinant adeno-associated virus–mediated transgene expression. Journal of Clinical Investigation, 2013, 123, 5310-5318.	8.2	133
18	Systemic Overexpression of IL-10 Induces CD4+CD25+ Cell Populations In Vivo and Ameliorates Type 1 Diabetes in Nonobese Diabetic Mice in a Dose-Dependent Fashion. Journal of Immunology, 2003, 171, 2270-2278.	0.8	125

#	Article	IF	CITATIONS
19	Increased Natural CD4+CD25+ Regulatory T Cells and Their Suppressor Activity Do Not Contribute to Mortality in Murine Polymicrobial Sepsis. Journal of Immunology, 2006, 177, 7943-7949.	0.8	121
20	Retinoic Acid and Rapamycin Differentially Affect and Synergistically Promote the Ex Vivo Expansion of Natural Human T Regulatory Cells. PLoS ONE, 2011, 6, e15868.	2.5	118
21	An Integral Role for Heme Oxygenase-1 and Carbon Monoxide in Maintaining Peripheral Tolerance by CD4+CD25+ Regulatory T Cells. Journal of Immunology, 2005, 174, 5181-5186.	0.8	111
22	Central Role for Interleukin-2 in Type 1 Diabetes. Diabetes, 2012, 61, 14-22.	0.6	109
23	Tissue distribution and clonal diversity of the T and B cell repertoire in type 1 diabetes. JCI Insight, 2016, 1, e88242.	5.0	108
24	Suppression by CD4+CD25+ Regulatory T Cells Is Dependent on Expression of Heme Oxygenase-1 in Antigen-Presenting Cells. American Journal of Pathology, 2008, 173, 154-160.	3.8	107
25	Immune modulation of effector CD4+ and regulatory T cell function by sorafenib in patients with hepatocellular carcinoma. Cancer Immunology, Immunotherapy, 2013, 62, 737-746.	4.2	106
26	Inhibition of glucose metabolism selectively targets autoreactive follicular helper T cells. Nature Communications, 2018, 9, 4369.	12.8	94
27	Adeno-Associated Virus-Mediated IL-10 Gene Therapy Inhibits Diabetes Recurrence in Syngeneic Islet Cell Transplantation of NOD Mice. Diabetes, 2003, 52, 708-716.	0.6	92
28	Autologous Umbilical Cord Blood Transfusion in Very Young Children With Type 1 Diabetes. Diabetes Care, 2009, 32, 2041-2046.	8.6	87
29	A case of unfulfilled expectations. Cytokines in idiopathic minimal lesion nephrotic syndrome. Pediatric Nephrology, 2006, 21, 603-610.	1.7	85
30	Avidity and Bystander Suppressive Capacity of Human Regulatory T Cells Expressing De Novo Autoreactive T-Cell Receptors in Type 1 Diabetes. Frontiers in Immunology, 2017, 8, 1313.	4.8	81
31	Low-Dose Anti-Thymocyte Globulin Preserves C-Peptide, Reduces HbA1c, and Increases Regulatory to Conventional T-Cell Ratios in New-Onset Type 1 Diabetes: Two-Year Clinical Trial Data. Diabetes, 2019, 68, 1267-1276.	0.6	80
32	Murine Antithymocyte Globulin Therapy Alters Disease Progression in NOD Mice by a Time-Dependent Induction of Immunoregulation. Diabetes, 2008, 57, 405-414.	0.6	74
33	Lactobacillus johnsonii N6.2 Modulates the Host Immune Responses: A Double-Blind, Randomized Trial in Healthy Adults. Frontiers in Immunology, 2017, 8, 655.	4.8	73
34	A Mutation in the Transcription Factor Foxp3 Drives T Helper 2 Effector Function in Regulatory T Cells. Immunity, 2019, 50, 362-377.e6.	14.3	72
35	Adiponectin and Leptin Concentrations May Aid in Discriminating Disease Forms in Children and Adolescents With Type 1 and Type 2 Diabetes. Diabetes Care, 2004, 27, 2010-2014.	8.6	69
36	Antithymocyte Globulin Plus G-CSF Combination Therapy Leads to Sustained Immunomodulatory and Metabolic Effects in a Subset of Responders With Established Type 1 Diabetes. Diabetes, 2016, 65, 3765-3775.	0.6	62

#	Article	IF	CITATIONS
37	Expansion of Human Tregs from Cryopreserved Umbilical Cord Blood for GMP-Compliant Autologous Adoptive Cell Transfer Therapy. Molecular Therapy - Methods and Clinical Development, 2017, 4, 178-191.	4.1	62
38	Autologous Umbilical Cord Blood Transfusion in Young Children With Type 1 Diabetes Fails to Preserve C-Peptide. Diabetes Care, 2011, 34, 2567-2569.	8.6	61
39	Ex vivo expanded autologous polyclonal regulatory T cells suppress inhibitor formation in hemophilia. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14030.	4.1	59
40	Application of a Genetic Risk Score to Racially Diverse Type 1 Diabetes Populations Demonstrates the Need for Diversity in Risk-Modeling. Scientific Reports, 2018, 8, 4529.	3.3	59
41	Influence of Membrane CD25 Stability on T Lymphocyte Activity: Implications for Immunoregulation. PLoS ONE, 2009, 4, e7980.	2.5	59
42	Dual-Sized Microparticle System for Generating Suppressive Dendritic Cells Prevents and Reverses Type 1 Diabetes in the Nonobese Diabetic Mouse Model. ACS Biomaterials Science and Engineering, 2019, 5, 2631-2646.	5.2	58
43	Strategies for durable \hat{I}^2 cell replacement in type 1 diabetes. Science, 2021, 373, 516-522.	12.6	57
44	Type 1 Interferons Potentiate Human CD8+ T-Cell Cytotoxicity Through a STAT4- and Granzyme B–Dependent Pathway. Diabetes, 2017, 66, 3061-3071.	0.6	56
45	Cross-reactive public TCR sequences undergo positive selection in the human thymic repertoire. Journal of Clinical Investigation, 2019, 129, 2446-2462.	8.2	55
46	Combinatorial delivery of immunosuppressive factors to dendritic cells using dual-sized microspheres. Journal of Materials Chemistry B, 2014, 2, 2562-2574.	5.8	53
47	Assessing theln VitroSuppressive Capacity of Regulatory T Cells. Immunological Investigations, 2007, 36, 607-628.	2.0	51
48	Standardizing T-Cell Biomarkers in Type 1 Diabetes: Challenges and Recent Advances. Diabetes, 2019, 68, 1366-1379.	0.6	49
49	Treg in type 1 diabetes. Cell Biochemistry and Biophysics, 2007, 48, 165-175.	1.8	47
50	Autologous Umbilical Cord Blood Infusion followed by Oral Docosahexaenoic Acid and Vitamin D Supplementation for C-Peptide Preservation in Children with Type 1 Diabetes. Biology of Blood and Marrow Transplantation, 2013, 19, 1126-1129.	2.0	47
51	Clinical application of regulatory T cells for treatment of type 1 diabetes and transplantation. European Journal of Immunology, 2008, 38, 931-934.	2.9	43
52	Minimum Information about T Regulatory Cells: A Step toward Reproducibility and Standardization. Frontiers in Immunology, 2017, 8, 1844.	4.8	43
53	Comparing Beta Cell Preservation Across Clinical Trials in Recent-Onset Type 1 Diabetes. Diabetes Technology and Therapeutics, 2020, 22, 948-953.	4.4	41
54	Serum Trypsinogen Levels in Type 1 Diabetes. Diabetes Care, 2017, 40, 577-582.	8.6	40

#	Article	IF	CITATIONS
55	Presence of Diabetes-Inhibiting, Glutamic Acid Decarboxylase-Specific, IL-10-Dependent, Regulatory T Cells in Naive Nonobese Diabetic Mice. Journal of Immunology, 2004, 173, 6777-6785.	0.8	38
56	Metformin Inhibits the Type 1 IFN Response in Human CD4+ T Cells. Journal of Immunology, 2019, 203, 338-348.	0.8	37
57	Exendinâ€4 Therapy in NOD Mice with Newâ€Onset Diabetes Increases Regulatory T Cell Frequency. Annals of the New York Academy of Sciences, 2008, 1150, 152-156.	3.8	36
58	Innate inflammation drives NK cell activation to impair Treg activity. Journal of Autoimmunity, 2020, 108, 102417.	6.5	36
59	The immuneML ecosystem for machine learning analysis of adaptive immune receptor repertoires. Nature Machine Intelligence, 2021, 3, 936-944.	16.0	35
60	T cells display mitochondria hyperpolarization in human type 1 diabetes. Scientific Reports, 2017, 7, 10835.	3.3	34
61	Heterogeneity of human anti-viral immunity shaped by virus, tissue, age, and sex. Cell Reports, 2021, 37, 110071.	6.4	34
62	Lipid and Lipoprotein Dysregulation in Sepsis: Clinical and Mechanistic Insights into Chronic Critical Illness. Journal of Clinical Medicine, 2021, 10, 1693.	2.4	32
63	Single-Cell RNA-seq of Human Myeloid-Derived Suppressor Cells in Late Sepsis Reveals Multiple Subsets With Unique Transcriptional Responses: A Pilot Study. Shock, 2021, 55, 587-595.	2.1	32
64	Defective response of CD4+ T cells to retinoic acid and TGF \hat{I}^2 in systemic lupus erythematosus. Arthritis Research and Therapy, 2011, 13, R106.	3.5	31
65	The Lupus Susceptibility Gene <i>Pbx1</i> Regulates the Balance between Follicular Helper T Cell and Regulatory T Cell Differentiation. Journal of Immunology, 2016, 197, 458-469.	0.8	30
66	Immune Mechanisms and Pathways Targeted in Type 1 Diabetes. Current Diabetes Reports, 2018, 18, 90.	4.2	29
67	Insulin-Like Growth Factor Dysregulation Both Preceding and Following Type 1 Diabetes Diagnosis. Diabetes, 2020, 69, 413-423.	0.6	29
68	CAR- and TRuC-redirected regulatory T cells differ in capacity to control adaptive immunity to FVIII. Molecular Therapy, 2021, 29, 2660-2676.	8.2	28
69	Interferon-Î ³ Limits Diabetogenic CD8+ T-Cell Effector Responses in Type 1 Diabetes. Diabetes, 2017, 66, 710-721.	0.6	26
70	T Cell Receptor Profiling in Type 1 Diabetes. Current Diabetes Reports, 2017, 17, 118.	4.2	26
71	Deâ€ <i>coding</i> genetic risk variants in type 1 diabetes. Immunology and Cell Biology, 2021, 99, 496-508.	2.3	26
72	Human Pancreatic Cancer Cells Induce a MyD88-Dependent Stromal Response to Promote a Tumor-Tolerant Immune Microenvironment. Cancer Research, 2017, 77, 672-683.	0.9	24

#	Article	IF	CITATIONS
73	Influence of host immunoregulatory genes, ER stress and gut microbiota on the shared pathogenesis of inflammatory bowel disease and Type 1 diabetes. Immunotherapy, 2013, 5, 1357-1366.	2.0	23
74	Human Regulatory T Cells From Umbilical Cord Blood Display Increased Repertoire Diversity and Lineage Stability Relative to Adult Peripheral Blood. Frontiers in Immunology, 2020, 11, 611.	4.8	23
75	PANDER-induced cell-death genetic networks in islets reveal central role for caspase-3 and cyclin-dependent kinase inhibitor 1A (p21). Gene, 2006, 369, 134-141.	2.2	22
76	The autoimmune disease-associated SNP rs917997 of IL18RAP controls IFN \hat{I}^3 production by PBMC. Journal of Autoimmunity, 2013, 44, 8-12.	6.5	22
77	Combination Therapy Reverses Hyperglycemia in NOD Mice With Established Type 1 Diabetes. Diabetes, 2015, 64, 3873-3884.	0.6	22
78	CD226 Deletion Reduces Type 1 Diabetes in the NOD Mouse by Impairing Thymocyte Development and Peripheral T Cell Activation. Frontiers in Immunology, 2020, 11, 2180.	4.8	21
79	Mesenchymal Stem Cells: A Potential Border Patrol for Transplanted Islets?. Diabetes, 2009, 58, 1728-1729.	0.6	20
80	Exocrine Pancreatic Enzymes Are a Serological Biomarker for Type 1 Diabetes Staging and Pancreas Size. Diabetes, 2021, 70, 944-954.	0.6	20
81	Synchronization of the Normal Human Peripheral Immune System: A Comprehensive Circadian Systems Immunology Analysis. Scientific Reports, 2020, 10, 672.	3.3	19
82	Autologous Regulatory T Cells for the Treatment of Type 1 Diabetes. Current Diabetes Reports, 2012, 12, 623-632.	4.2	18
83	Immunomodulatory Dual-Sized Microparticle System Conditions Human Antigen Presenting Cells Into a Tolerogenic Phenotype In Vitro and Inhibits Type 1 Diabetes-Specific Autoreactive T Cell Responses. Frontiers in Immunology, 2020, 11 , 574447.	4.8	18
84	Isogenic Cellular Systems Model the Impact of Genetic Risk Variants in the Pathogenesis of Type 1 Diabetes. Frontiers in Endocrinology, 2017, 8, 276.	3. 5	17
85	A Novel Single Cell RNA-seq Analysis of Non-Myeloid Circulating Cells in Late Sepsis. Frontiers in Immunology, 2021, 12, 696536.	4.8	17
86	A hypolipoprotein sepsis phenotype indicates reduced lipoprotein antioxidant capacity, increased endothelial dysfunction and organ failure, and worse clinical outcomes. Critical Care, 2021, 25, 341.	5.8	17
87	TCR+/BCR+ dual-expressing cells and their associated public BCR clonotype are not enriched in type 1 diabetes. Cell, 2021, 184, 827-839.e14.	28.9	16
88	CFTR mutations impart elevated immune reactivity in a murine model of cystic fibrosis related diabetes. Cytokine, 2008, 44, 154-159.	3.2	15
89	geneBasis: an iterative approach for unsupervised selection of targeted gene panels from scRNA-seq. Genome Biology, 2021, 22, 333.	8.8	15
90	Clinical Applications of Regulatory T cells in Adoptive Cell Therapies. Cell & Gene Therapy Insights, 2018, 4, 405-429.	0.1	14

#	Article	IF	CITATIONS
91	Autoreactive T cell receptors with shared germline-like \hat{l}_{\pm} chains in type 1 diabetes. JCI Insight, 2021, 6, .	5.0	14
92	Serum levels of soluble CD25 as a marker for hepatocellular carcinoma. Oncology Letters, 2012, 4, 840-846.	1.8	13
93	Characterization of Proinsulin T Cell Epitopes Restricted by Type 1 Diabetes–Associated HLA Class II Molecules. Journal of Immunology, 2020, 204, 2349-2359.	0.8	13
94	Reduced Follicular Regulatory T Cells in Spleen and Pancreatic Lymph Nodes of Patients With Type 1 Diabetes. Diabetes, 2021, 70, 2892-2902.	0.6	12
95	Low-Dose ATG/GCSF in Established Type 1 Diabetes: A Five-Year Follow-up Report. Diabetes, 2021, 70, 1123-1129.	0.6	11
96	Lupus susceptibility gene Esrrg modulates regulatory T cells through mitochondrial metabolism. JCI Insight, 2021, 6 , .	5.0	11
97	The Immunoregulatory Role of the Signal Regulatory Protein Family and CD47 Signaling Pathway in Type 1 Diabetes. Frontiers in Immunology, 2021, 12, 739048.	4.8	11
98	Immunophenotyping reveals distinct subgroups of lupus patients based on their activated T cell subsets. Clinical Immunology, 2020, 221, 108602.	3.2	10
99	Guidelines for standardizing T ell cytometry assays to link biomarkers, mechanisms, and disease outcomes in type 1 diabetes. European Journal of Immunology, 2022, 52, 372-388.	2.9	10
100	A checkpoint on innate myeloid cells in pulmonary arterial hypertension. Pulmonary Circulation, 2019, 9, 1-5.	1.7	9
101	Oral therapy with colonization factor antigen I prevents development of type 1 diabetes in Non-obese Diabetic mice. Scientific Reports, 2020, 10, 6156.	3.3	9
102	Infant T cells are developmentally adapted for robust lung immune responses through enhanced T cell receptor signaling. Science Immunology, 2021, 6, eabj0789.	11.9	9
103	Genetic Composition and Autoantibody Titers Model the Probability of Detecting C-Peptide Following Type 1 Diabetes Diagnosis. Diabetes, 2021, 70, 932-943.	0.6	8
104	Use of Induced Pluripotent Stem Cells to Build Isogenic Systems and Investigate Type 1 Diabetes. Frontiers in Endocrinology, 2021, 12, 737276.	3.5	8
105	An anti-CRF antibody suppresses the HPA axis and reverses stress-induced phenotypes. Journal of Experimental Medicine, 2019, 216, 2479-2491.	8.5	7
106	Pleiotropic roles of the insulin-like growth factor axis in type 1 diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 2019, 26, 188-194.	2.3	7
107	Overexpression of the <i>PTPN22</i> Autoimmune Risk Variant LYP-620W Fails to Restrain Human CD4+ T Cell Activation. Journal of Immunology, 2021, 207, 849-859.	0.8	7
108	Improving the Prediction of Type 1 Diabetes Across Ancestries. Diabetes Care, 2022, 45, e48-e50.	8.6	7

#	Article	IF	CITATIONS
109	Regulatory T cells directed to the site of the action. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20553-20554.	7.1	6
110	CD70 Inversely Regulates Regulatory T Cells and Invariant NKT Cells and Modulates Type 1 Diabetes in NOD Mice. Journal of Immunology, 2020, 205, 1763-1777.	0.8	6
111	Myeloid-Derived Suppressor Cells and Pulmonary Hypertension. International Journal of Molecular Sciences, 2018, 19, 2277.	4.1	5
112	Human CD4+CD25+CD226-Tregs Demonstrate Increased Purity, Lineage Stability, and Suppressive Capacity Versus CD4+CD25+CD127lo/- Tregs for Adoptive Cell Therapy. Frontiers in Immunology, 2022, 13, .	4.8	5
113	A Novel Mutation in Insulin-Like Growth Factor 1 Receptor (c.641-2A>G) Is Associated with Impaired Growth, Hypoglycemia, and Modified Immune Phenotypes. Hormone Research in Paediatrics, 2020, 93, 322-334.	1.8	3
114	Teaching Type 1 Diabetes: Creating Stakeholder Engagement in Biomedical Careers Through Undergraduate Research Curriculum. Medical Science Educator, 2020, 30, 69-73.	1.5	1
115	Suppression of Inhibitor Formation in Protein and Gene Therapy for Hemophilia Using Ex Vivo Expanded Treg. Blood, 2012, 120, 13-13.	1.4	1
116	Editorial: Footprints of Immune Cells in the Type 1 Diabetic Pancreas. Frontiers in Endocrinology, 2021, 12, 767012.	3.5	0