
Assocâ€prof Joshua A Kritzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8559476/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Helical β-Peptide Inhibitors of the p53-hDM2 Interaction. Journal of the American Chemical Society, 2004, 126, 9468-9469.	13.7	298
2	Getting in Shape: Controlling Peptide Bioactivity and Bioavailability Using Conformational Constraints. ACS Chemical Biology, 2013, 8, 488-499.	3.4	187
3	β-Peptides as inhibitors of protein–protein interactions. Bioorganic and Medicinal Chemistry, 2005, 13, 11-16.	3.0	168
4	Comprehensive analysis of loops at protein-protein interfaces for macrocycle design. Nature Chemical Biology, 2014, 10, 716-722.	8.0	160
5	Compounds from an unbiased chemical screen reverse both ER-to-Golgi trafficking defects and mitochondrial dysfunction in Parkinson's disease models. DMM Disease Models and Mechanisms, 2010, 3, 194-208.	2.4	159
6	Rapid selection of cyclic peptides that reduce α-synuclein toxicity in yeast and animal models. Nature Chemical Biology, 2009, 5, 655-663.	8.0	130
7	Cell Penetration Profiling Using the Chloroalkane Penetration Assay. Journal of the American Chemical Society, 2018, 140, 11360-11369.	13.7	125
8	Diversity-Oriented Stapling Yields Intrinsically Cell-Penetrant Inducers of Autophagy. Journal of the American Chemical Society, 2017, 139, 7792-7802.	13.7	121
9	Emerging Methods and Design Principles for Cellâ€Penetrant Peptides. Angewandte Chemie - International Edition, 2018, 57, 11868-11881.	13.8	116
10	Relationship between Side Chain Structure and 14-Helix Stability of β3-Peptides in Water. Journal of the American Chemical Society, 2005, 127, 167-178.	13.7	94
11	Miniature Protein Inhibitors of the p53-hDM2 Interaction. ChemBioChem, 2006, 7, 29-31.	2.6	81
12	Solution Structure of a β-Peptide Ligand for hDM2. Journal of the American Chemical Society, 2005, 127, 4118-4119.	13.7	75
13	A Rapid Library Screen for Tailoring β-Peptide Structure and Function. Journal of the American Chemical Society, 2005, 127, 14584-14585.	13.7	70
14	Analysis of Loops that Mediate Protein–Protein Interactions and Translation into Submicromolar Inhibitors. Journal of the American Chemical Society, 2016, 138, 12876-12884.	13.7	54
15	Trapped! A Critical Evaluation of Methods for Measuring Total Cellular Uptake versus Cytosolic Localization. Bioconjugate Chemistry, 2019, 30, 1006-1027.	3.6	53
16	A critical analysis of methods used to investigate the cellular uptake and subcellular localization of RNA therapeutics. Nucleic Acids Research, 2020, 48, 7623-7639.	14.5	40
17	Metal-binding and redox properties of substituted linear and cyclic ATCUN motifs. Journal of Inorganic Biochemistry, 2014, 139, 65-76.	3.5	38
18	Magic bullets in nature's arsenal. Nature Chemical Biology, 2010, 6, 566-567.	8.0	36

#	Article	IF	CITATIONS
19	Conformational Restriction of Peptides Using Dithiol Bis-Alkylation. Methods in Enzymology, 2016, 580, 303-332.	1.0	35
20	Peptide Bicycles that Inhibit the Grb2 SH2 Domain. ChemBioChem, 2012, 13, 1490-1496.	2.6	34
21	Macrocyclization of the ATCUN Motif Controls Metal Binding and Catalysis. Inorganic Chemistry, 2013, 52, 2729-2735.	4.0	33
22	A bicyclic peptide scaffold promotes phosphotyrosine mimicry and cellular uptake. Bioorganic and Medicinal Chemistry, 2014, 22, 6387-6391.	3.0	30
23	Quantitative measurement of cytosolic penetration using the chloroalkane penetration assay. Methods in Enzymology, 2020, 641, 277-309.	1.0	27
24	Directed evolution of cyclic peptides for inhibition of autophagy. Chemical Science, 2021, 12, 3526-3543.	7.4	26
25	Designing Well-Structured Cyclic Pentapeptides Based on Sequence–Structure Relationships. Journal of Physical Chemistry B, 2018, 122, 3908-3919.	2.6	20
26	Encodable Activators of Src Family Kinases. Journal of the American Chemical Society, 2006, 128, 16506-16507.	13.7	19
27	Neue Methoden und Designprinzipien für zellgägige Peptide. Angewandte Chemie, 2018, 130, 12042-12057.	2.0	18
28	Phosphotyrosine isosteres: past, present and future. Organic and Biomolecular Chemistry, 2020, 18, 583-605.	2.8	18
29	Cytosolic delivery of peptidic STAT3 SH2 domain inhibitors. Bioorganic and Medicinal Chemistry, 2020, 28, 115542.	3.0	16
30	Quantitative Measurement of Cytosolic and Nuclear Penetration of Oligonucleotide Therapeutics. ACS Chemical Biology, 2022, 17, 348-360.	3.4	16
31	Structured Cyclic Peptides That Bind the EH Domain of EHD1. Biochemistry, 2014, 53, 4758-4760.	2.5	14
32	Potential C-terminal-domain inhibitors of heat shock protein 90 derived from a C-terminal peptide helix. Bioorganic and Medicinal Chemistry, 2014, 22, 3989-3993.	3.0	14
33	A Reverse Science Fair that Connects High School Students with University Researchers. Journal of Chemical Education, 2017, 94, 171-176.	2.3	14
34	Stapled Peptide Inhibitors of Autophagy Adapter LC3B. ChemBioChem, 2020, 21, 2777-2785.	2.6	14
35	Cellular Uptake and Cytosolic Delivery of a Cyclic Cystine Knot Scaffold. ACS Chemical Biology, 2020, 15, 1650-1661.	3.4	14
36	β-Branched Amino Acids Stabilize Specific Conformations of Cyclic Hexapeptides. Biophysical Journal, 2019, 116, 433-444.	0.5	11

#	Article	IF	CITATIONS
37	HaloTag Forms an Intramolecular Disulfide. Bioconjugate Chemistry, 2021, 32, 964-970.	3.6	11
38	Stapled β-Hairpins Featuring 4-Mercaptoproline. Journal of the American Chemical Society, 2021, 143, 15039-15044.	13.7	11
39	Yeast can accommodate phosphotyrosine: v-Src toxicity in yeast arises from a single disrupted pathway. FEMS Yeast Research, 2018, 18, .	2.3	10
40	Small-Molecule Inhibitors of <i>Haemophilus influenzae</i> IgA1 Protease. ACS Infectious Diseases, 2019, 5, 1129-1138.	3.8	10
41	The Secret of MIM: A Novel, MCL-1-Specific Small Molecule. Chemistry and Biology, 2012, 19, 1082-1083.	6.0	9
42	A cell-penetrant lactam-stapled peptide for targeting elF4E protein-protein interactions. European Journal of Medicinal Chemistry, 2020, 205, 112655.	5.5	9
43	Grand Challenge Commentary: Beyond discovery: probes that see, grab and poke. Nature Chemical Biology, 2010, 6, 868-870.	8.0	8
44	Parallel Screening Using the Chloroalkane Penetration Assay Reveals Structure-Penetration Relationships. ACS Chemical Biology, 2021, 16, 1184-1190.	3.4	8
45	Identifying Loop-Mediated Protein–Protein Interactions Using LoopFinder. Methods in Molecular Biology, 2017, 1561, 255-277.	0.9	7
46	Versatile Substrates and Probes for IgA1 Protease Activity. ChemBioChem, 2013, 14, 2007-2012.	2.6	6
47	Designing convergent chemistry curricula. Nature Chemical Biology, 2016, 12, 382-386.	8.0	6
48	How to be quick on the uptake. Nature Chemical Biology, 2016, 12, 764-765.	8.0	6
49	Solution structure of a designed cyclic peptide ligand for nickel and copper ions. Tetrahedron, 2014, 70, 7651-7654.	1.9	5
50	Thioether-stapled macrocyclic inhibitors of the EH domain of EHD1. Bioorganic and Medicinal Chemistry, 2018, 26, 1206-1211.	3.0	4
51	When Undergraduates Ask "Why,―Chemical Biology Answers. ACS Chemical Biology, 2006, 1, 411-413.	3.4	2
52	Stringing Together a Universal Influenza Antibody. Biochemistry, 2019, 58, 1943-1944.	2.5	2
53	Inside Cover: Peptide Bicycles that Inhibit the Grb2 SH2 Domain (ChemBioChem 10/2012). ChemBioChem, 2012, 13, 1378-1378.	2.6	0
54	Design and Characterization of an EHD1 Inhibitor. FASEB Journal, 2013, 27, 1015.8.	0.5	0