List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8557513/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electronic devices for biomarker monitoring. , 2022, , 183-207.		0
2	Challenges, Prospects, and Emerging Applications of Inkjetâ€Printed Electronics: A Chemist's Point of View. Angewandte Chemie - International Edition, 2022, 61, .	13.8	35
3	In vivo electrochemically-assisted polymerization of conjugated functionalized terthiophenes inside the vascular system of a plant. Electrochemistry Communications, 2022, 137, 107270.	4.7	5
4	A simple flexible printed capacitive pressure sensor for chronic wound monitoring. Sensors and Actuators A: Physical, 2022, 338, 113490.	4.1	10
5	Novel nanoscale Yb-MOF used as highly efficient electrode for simultaneous detection of heavy metal ions. Journal of Materials Science, 2021, 56, 8172-8185.	3.7	32
6	Gold nanoparticle-based eco-friendly ink for electrode patterning on flexible substrates. Electrochemistry Communications, 2021, 123, 106918.	4.7	13
7	Recent trends in application of nanomaterials for the development of electrochemical microRNA biosensors. Mikrochimica Acta, 2021, 188, 128.	5.0	22
8	Electrochemical tuning of reduced graphene oxide in printed electrolyte-gated transistors. Impact on charge transport properties. Electrochimica Acta, 2021, 371, 137819.	5.2	13
9	Algae-functionalized hydrogel-gated organic field-effect transistor. Application to the detection of herbicides. Electrochimica Acta, 2021, 372, 137881.	5.2	7
10	Nernst–Planck–Poisson analysis of electrolyte-gated organic field-effect transistors. Journal Physics D: Applied Physics, 2021, 54, 415101.	2.8	9
11	Computational Studies of a DNA-Based Aptasensor: toward Theory-Driven Transduction Improvement. Journal of Physical Chemistry B, 2021, 125, 9499-9506.	2.6	3
12	Designing a magnetic inductive micro-electrode for virus monitoring: modelling and feasibility for hepatitis B virus. Mikrochimica Acta, 2020, 187, 463.	5.0	6
13	Sensors Made of Natural Renewable Materials: Efficiency, Recyclability or Biodegradability—The Green Electronics. Sensors, 2020, 20, 5898.	3.8	21
14	All-Inkjet-Printed Humidity Sensors for the Detection of Relative Humidity in Air and Soil—Towards the Direct Fabrication on Plant Leaves. MRS Advances, 2020, 5, 965-973.	0.9	7
15	Monitoring photosynthetic microorganism activity with an electrolyte-gated organic field effect transistor. Biosensors and Bioelectronics, 2020, 157, 112166.	10.1	12
16	Driving Electrolyte-Gated Organic Field-Effect Transistors with Redox Reactions. , 2020, 60, .		0
17	Recent Advances in Skin Chemical Sensors. Sensors, 2019, 19, 4376.	3.8	26
18	Silver nanoparticles on graphene quantum dots as nanozyme for efficient H ₂ O ₂ reduction in a glucose biosensor. Materials Research Express, 2019, 6, 115403.	1.6	17

#	Article	IF	CITATIONS
19	A DNA hydrogel gated organic field effect transistor. Organic Electronics, 2019, 75, 105402.	2.6	15
20	Peptide-modified electrolyte-gated organic field effect transistor. Application to Cu2+ detection. Biosensors and Bioelectronics, 2019, 127, 118-125.	10.1	36
21	Electrolyte-gated organic field-effect transistors (EGOFETs) as complementary tools to electrochemistry for the study of surface processes. Electrochemistry Communications, 2019, 98, 43-46.	4.7	16
22	lonic Liquids as Environmentally Benign Electrolytes for Highâ€Performance Supercapacitors. Global Challenges, 2019, 3, 1800023.	3.6	50
23	In-situ electrochemically deposited Fe3O4 nanoparticles onto graphene nanosheets as amperometric amplifier for electrochemical biosensing applications. Sensors and Actuators B: Chemical, 2019, 283, 52-60.	7.8	31
24	Sensitive and Selective Detection of Multiple Metal Ions Using Amino Acids Modified Glassy Carbon Electrodes. Journal of the Electrochemical Society, 2018, 165, B67-B73.	2.9	18
25	Triggering the Electrolyte-Gated Organic Field-Effect Transistor output characteristics through gate functionalization using diazonium chemistry: Application to biodetection of 2,4-dichlorophenoxyacetic acid. Biosensors and Bioelectronics, 2018, 113, 32-38.	10.1	33
26	Electrochemical determination of tetracycline using AuNP-coated molecularly imprinted overoxidized polypyrrole sensing interface. Electrochimica Acta, 2018, 270, 535-542.	5.2	107
27	Switchable Hydrogel-Gated Organic Field-Effect Transistors. Langmuir, 2018, 34, 3686-3693.	3.5	30
28	Cyclic voltammetry, square wave voltammetry, electrochemical impedance spectroscopy and colorimetric method for hydrogen peroxide detection based on chitosan/silver nanocomposite. Arabian Journal of Chemistry, 2018, 11, 453-459.	4.9	33
29	Development of a Selective Electrochemical Sensing Platform for the Simultaneous Detection of Tl ⁺ , Cu ²⁺ , Hg ²⁺ , and Zn ²⁺ lons. Journal of the Electrochemical Society, 2018, 165, B399-B406.	2.9	15
30	Fabrication and Use of Organic Electrochemical Transistors for Sensing of Metabolites in Aqueous Media. Applied Sciences (Switzerland), 2018, 8, 928.	2.5	29
31	Transistors for Chemical Monitoring of Living Cells. Biosensors, 2018, 8, 65.	4.7	13
32	Versatile transduction scheme based on electrolyte-gated organic field-effect transistor used as immunoassay readout system. Biosensors and Bioelectronics, 2017, 92, 215-220.	10.1	27
33	Fabrication of a quinone containing layer on gold nanoparticles directed to a label-free and reagentless electrochemical miRNA sensor. Analytical Methods, 2017, 9, 2696-2702.	2.7	14
34	Enzyme-less electrochemical displacement heterogeneous immunosensor for diclofenac detection. Biosensors and Bioelectronics, 2017, 97, 246-252.	10.1	27
35	Molecular Dynamics Simulation of a RNA Aptasensor. Journal of Physical Chemistry B, 2017, 121, 4071-4080.	2.6	34
36	Inkjetâ€Printing: A New Fabrication Technology for Organic Transistors. Advanced Materials Technologies, 2017, 2, 1700063.	5.8	106

#	Article	IF	CITATIONS
37	Recent Advances in Electrochemical Immunosensors. Sensors, 2017, 17, 794.	3.8	69
38	Comparison of Electrochemical Immunosensors and Aptasensors for Detection of Small Organic Molecules in Environment, Food Safety, Clinical and Public Security. Biosensors, 2016, 6, 7.	4.7	45
39	Electrolytic Gated Organic Field-Effect Transistors for Application in Biosensors—A Review. Electronics (Switzerland), 2016, 5, 9.	3.1	119
40	Oneâ€step Electrosynthesis of Poly(1,5â€diaminonaphthalene)/Graphene Nanocomposite as Platform for Lead Detection in Water. Electroanalysis, 2016, 28, 1907-1913.	2.9	22
41	Grafting of a peptide probe for Prostate-Specific Antigen detection using diazonium electroreduction and click chemistry. Biosensors and Bioelectronics, 2016, 81, 131-137.	10.1	33
42	Nanodomains of Juglonethiol on Au(111): Relationship between Domain Size and Electrochemical Properties. Journal of Physical Chemistry C, 2015, 119, 29015-29026.	3.1	4
43	Label-free electrochemical detection of prostate-specific antigen based on nucleic acid aptamer. Biosensors and Bioelectronics, 2015, 68, 49-54.	10.1	76
44	General approach for electrochemical detection of persistent pharmaceutical micropollutants: Application to acetaminophen. Biosensors and Bioelectronics, 2015, 72, 205-210.	10.1	20
45	Modified Electrodes Used for Electrochemical Detection of Metal Ions in Environmental Analysis. Biosensors, 2015, 5, 241-275.	4.7	264
46	DNA and PNA Probes for DNA Detection in Electroanalytical Systems. RNA Technologies, 2015, , 47-80.	0.3	2
47	Electrocatalytic miRNA Detection Using Cobalt Porphyrin-Modified Reduced Graphene Oxide. Sensors, 2014, 14, 9984-9994.	3.8	11
48	An innovative strategy for direct electrochemical detection of microRNA biomarkers. Analytical and Bioanalytical Chemistry, 2014, 406, 1241-1244.	3.7	17
49	Simultaneous Electroreduction of Different Diazonium Salts for Direct Electrochemical DNA Biosensor Development. Electrochimica Acta, 2014, 140, 49-58.	5.2	19
50	E-assay concept: Detection of bisphenol A with a label-free electrochemical competitive immunoassay. Biosensors and Bioelectronics, 2014, 53, 214-219.	10.1	47
51	Detection of Glutamate and Acetylcholine with Organic Electrochemical Transistors Based on Conducting Polymer/Platinum Nanoparticle Composites. Advanced Materials, 2014, 26, 5658-5664.	21.0	142
52	On the mode of operation in electrolyte-gated thin film transistors based on different substituted polythiophenes. Organic Electronics, 2014, 15, 2420-2427.	2.6	52
53	Direct, reagentless electrochemical detection of the BIR3 domain of X-linked inhibitor of apoptosis protein using a peptide-based conducting polymer sensor. Biosensors and Bioelectronics, 2014, 61, 57-62.	10.1	18
54	Labelâ€Free Electrochemical Immunoaffinity Sensor Based on Impedimetric Method for Pesticide Detection. Electroanalysis, 2013, 25, 664-670.	2.9	14

#	Article	IF	CITATIONS
55	Copolythiophene-based water-gated organic field-effect transistors for biosensing. Journal of Materials Chemistry B, 2013, 1, 2090.	5.8	41
56	Tuning the threshold voltage in electrolyte-gated organic field-effect transistors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8394-8399.	7.1	94
57	Electrochemical investigation of interactions between quinone derivatives and single stranded DNA. Electrochimica Acta, 2012, 85, 588-593.	5.2	9
58	DNA detection with a water-gated organic field-effect transistor. Organic Electronics, 2012, 13, 1-6.	2.6	127
59	Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors. Analytical and Bioanalytical Chemistry, 2012, 402, 1813-1826.	3.7	247
60	Functionalization of single-walled carbon nanotubes for direct and selective electrochemical detection of DNA. Analyst, The, 2011, 136, 1023-1028.	3.5	29
61	Use of poly(3-hexylthiophene)/poly(methyl methacrylate) (P3HT/PMMA) blends to improve the performance of water-gated organic field-effect transistors. Organic Electronics, 2011, 12, 1253-1257.	2.6	56
62	A Waterâ€Gate Organic Fieldâ€Effect Transistor. Advanced Materials, 2010, 22, 2565-2569.	21.0	265
63	Hydroxynaphthoquinone Ultrathin Films Obtained by Diazonium Electroreduction: Toward Design of Biosensitive Electroactive Interfaces. Analytical Chemistry, 2010, 82, 3523-3530.	6.5	29
64	Nanometric Layers for Direct, Signal-On, Selective, and Sensitive Electrochemical Detection of Oligonucleotides Hybridization. Journal of the American Chemical Society, 2008, 130, 15752-15753.	13.7	52
65	DNA Electrochemical Sensor Based on Conducting Polymer: Dependence of the "Signal-On―Detection on the Probe Sequence Localization. Analytical Chemistry, 2005, 77, 3351-3356.	6.5	51
66	Electroactive Poly(aromatic amine) Films for Iron Protection in Sulfate Medium. Journal of the Electrochemical Society, 2001, 148, B121.	2.9	64
67	Poly(5â€aminoâ€1,4â€naphthoquinone), a Novel Lithiumâ€Inserting Electroactive Polymer with High Specific Charge. Journal of the Electrochemical Society, 1999, 146, 2393-2396.	2.9	75
68	Anodic oxidation of 5-amino-1,4-naphthoquinone (ANQ) and synthesis of a conducting polymer (PANQ). Synthetic Metals, 1998, 92, 197-205.	3.9	80
69	Challenges, Prospects, and Emerging Applications of Inkjetâ€Printed Electronics: A Chemist's Point of View. Angewandte Chemie, 0, , .	2.0	2