Jeong-Hyun Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8555432/publications.pdf

Version: 2024-02-01

567281 434195 38 979 15 31 g-index citations h-index papers 39 39 39 1496 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Realization of Curved Circular Nanotubes Using In Situ Monitored Self-Assembly. Nano Letters, 2022, ,	9.1	1
2	Electron Beam Maneuvering of a Single Polymer Layer for Reversible 3D Self-Assembly. Nano Letters, 2021, 21, 2066-2073.	9.1	3
3	Hybridized Radial and Edge Coupled 3D Plasmon Modes in Selfâ€Assembled Graphene Nanocylinders. Small, 2021, 17, e2100079.	10.0	8
4	Graphene Nanocylinders: Hybridized Radial and Edge Coupled 3D Plasmon Modes in Selfâ€Assembled Graphene Nanocylinders (Small 14/2021). Small, 2021, 17, 2170064.	10.0	0
5	Self-Assembled 3D Nanosplit Rings for Plasmon-Enhanced Optofluidic Sensing. Nano Letters, 2020, 20, 6697-6705.	9.1	13
6	Electron Irradiation Driven Nanohands for Sequential Origami. Nano Letters, 2020, 20, 4975-4984.	9.1	9
7	Nanoscale Self-Assembly Using Ion and Electron Beam Techniques: A Rapid Review. MRS Advances, 2020, 5, 3507-3520.	0.9	0
8	Nano-Architecture Driven Plasmonic Field Enhancement in 3D Graphene Structures. ACS Nano, 2019, 13, 1050-1059.	14.6	11
9	Fabrication of Three-Dimensional Graphene-Based Polyhedrons via Origami-Like Self-Folding. Journal of Visualized Experiments, 2018, , .	0.3	0
10	Ion-Induced Localized Nanoscale Polymer Reflow for Three-Dimensional Self-Assembly. ACS Nano, 2018, 12, 10251-10261.	14.6	18
11	3D Sensing: Small-Scale Biological and Artificial Multidimensional Sensors for 3D Sensing (Small) Tj ETQq1 1 0.78	84314 rgB 	T /Overlock 1
12	Smallâ€6cale Biological and Artificial Multidimensional Sensors for 3D Sensing. Small, 2018, 14, e1801145.	10.0	16
13	Self-Assembled Three-Dimensional Graphene-Based Polyhedrons Inducing Volumetric Light Confinement. Nano Letters, 2017, 17, 1987-1994.	9.1	45
14	Plasma Triggered Grain Coalescence for Self-Assembly of 3D Nanostructures. Nano-Micro Letters, 2017, 9, 27.	27.0	13
15	Remotely Controlled Microscale 3D Selfâ€Assembly Using Microwave Energy. Advanced Materials Technologies, 2017, 2, 1700035.	5.8	9
16	Three-Dimensionally Coupled THz Octagrams as Isotropic Metamaterials. ACS Photonics, 2017, 4, 2436-2445.	6.6	6
17	Three-Dimensional Anisotropic Metamaterials as Triaxial Optical Inclinometers. Scientific Reports, 2017, 7, 2680.	3.3	11
18	Fabrication of Nanopillar-Based Split Ring Resonators for Displacement Current Mediated Resonances in Terahertz Metamaterials. Journal of Visualized Experiments, 2017, , .	0.3	1

#	Article	IF	Citations
19	3D Microelectronics: Selfâ€Assembled Multifunctional 3D Microdevices (Adv. Electron. Mater. 6/2016). Advanced Electronic Materials, 2016, 2, .	5.1	O
20	In Situ Monitored Self-Assembly of Three-Dimensional Polyhedral Nanostructures. Nano Letters, 2016, 16, 3655-3660.	9.1	23
21	Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials (Advanced Optical Materials 8/2016). Advanced Optical Materials, 2016, 4, 1312-1312.	7.3	1
22	Tunable Optical Transparency in Self-Assembled Three-Dimensional Polyhedral Graphene Oxide. ACS Nano, 2016, 10, 9586-9594.	14.6	18
23	Displacement Current Mediated Resonances in Terahertz Metamaterials. Advanced Optical Materials, 2016, 4, 1302-1309.	7. 3	12
24	Selfâ€Assembled Multifunctional 3D Microdevices. Advanced Electronic Materials, 2016, 2, 1500459.	5.1	20
25	Self-folding nanostructures with imprint patterned surfaces (SNIPS). Faraday Discussions, 2016, 191, 61-71.	3.2	13
26	Patterning Anodic Porous Alumina with Resist Developers for Patterned Nanowire Formation. Materials Research Society Symposia Proceedings, 2015, 1785, 13-18.	0.1	1
27	Silicon Nanowire Degradation and Stabilization during Lithium Cycling by SEI Layer Formation. Nano Letters, 2014, 14, 3088-3095.	9.1	89
28	Enhanced Lithium Ion Battery Cycling of Silicon Nanowire Anodes by Template Growth to Eliminate Silicon Underlayer Islands. Nano Letters, 2013, 13, 5740-5747.	9.1	105
29	Nanoscale Origami for 3D Optics. Small, 2011, 7, 1943-1948.	10.0	145
30	3D Nanofabrication: Nanoscale Origami for 3D Optics (Small 14/2011). Small, 2011, 7, 1850-1850.	10.0	1
31	Curving Nanostructures Using Extrinsic Stress. Advanced Materials, 2010, 22, 2320-2324.	21.0	62
32	Directed growth of fibroblasts into three dimensional micropatterned geometries via self-assembling scaffolds. Biomaterials, 2010, 31, 1683-1690.	11.4	87
33	A Three Dimensional Self-folding Package (SFP) for Electronics. Materials Research Society Symposia Proceedings, 2010, 1249, 1.	0.1	6
34	Plastic Deformation Drives Wrinkling, Saddling, and Wedging of Annular Bilayer Nanostructures. Nano Letters, 2010, 10, 5098-5102.	9.1	29
35	Three Dimensional Nanofabrication Using Surface Forces. Langmuir, 2010, 26, 16534-16539.	3.5	59
36	A Facile Method for Patterning Substrates with Zinc Oxide Nanowires. Materials Research Society Symposia Proceedings, 2009, 1174, 105.	0.1	0

#	Article	IF	CITATIONS
37	Self-Assembly of Lithographically Patterned Nanoparticles. Nano Letters, 2009, 9, 4049-4052.	9.1	98
38	Self-Assembly Based on Chromium/Copper Bilayers. Journal of Microelectromechanical Systems, 2009, 18, 784-791.	2.5	46