
Andreas Engert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8553849/publications.pdf Version: 2024-02-01

ANDREAS ENCERT

#	Article	IF	CITATIONS
1	A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nature Genetics, 2007, 39, 870-874.	21.4	1,370
2	Association analysis identifies 65 new breast cancer risk loci. Nature, 2017, 551, 92-94.	27.8	1,099
3	Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nature Genetics, 2013, 45, 353-361.	21.4	960
4	Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. American Journal of Human Genetics, 2019, 104, 21-34.	6.2	711
5	Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nature Genetics, 2015, 47, 373-380.	21.4	513
6	Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nature Genetics, 2013, 45, 371-384.	21.4	493
7	Genome-wide association studies identify four ER negative–specific breast cancer risk loci. Nature Genetics, 2013, 45, 392-398.	21.4	374
8	Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nature Genetics, 2017, 49, 680-691.	21.4	356
9	Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nature Genetics, 2017, 49, 1767-1778.	21.4	289
10	Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nature Genetics, 2020, 52, 572-581.	21.4	265
11	Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma. Nature Genetics, 2015, 47, 987-995.	21.4	218
12	Functional Variants at the 11q13 Risk Locus for Breast Cancer Regulate Cyclin D1 Expression through Long-Range Enhancers. American Journal of Human Genetics, 2013, 92, 489-503.	6.2	201
13	A genome-wide association study of Hodgkin's lymphoma identifies new susceptibility loci at 2p16.1 (REL), 8q24.21 and 10p14 (GATA3). Nature Genetics, 2010, 42, 1126-1130.	21.4	177
14	Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility. Nature Genetics, 2020, 52, 494-504.	21.4	138
15	Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. Nature Genetics, 2016, 48, 374-386.	21.4	125
16	Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nature Genetics, 2020, 52, 56-73.	21.4	120
17	Identification of a BRCA2-Specific Modifier Locus at 6p24 Related to Breast Cancer Risk. PLoS Genetics, 2013, 9, e1003173.	3.5	105
18	Evidence that breast cancer risk at the 2q35 locus is mediated through IGFBP5 regulation. Nature Communications, 2014, 5, 4999.	12.8	105

ANDREAS ENGERT

#	Article	IF	CITATIONS
19	Fine-Scale Mapping of the FGFR2 Breast Cancer Risk Locus: Putative Functional Variants Differentially Bind FOXA1 and E2F1. American Journal of Human Genetics, 2013, 93, 1046-1060.	6.2	98
20	Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus. Nature Communications, 2016, 7, 12675.	12.8	78
21	Fine-Scale Mapping of the 5q11.2 Breast Cancer Locus Reveals at Least Three Independent Risk Variants Regulating MAP3K1. American Journal of Human Genetics, 2015, 96, 5-20.	6.2	76
22	Variation at 3p24.1 and 6q23.3 influences the risk of Hodgkin's lymphoma. Nature Communications, 2013, 4, 2549.	12.8	62
23	Comparative Validation of Breast Cancer Risk Prediction Models and Projections for Future Risk Stratification. Journal of the National Cancer Institute, 2020, 112, 278-285.	6.3	61
24	Genome-wide association study of germline variants and breast cancer-specific mortality. British Journal of Cancer, 2019, 120, 647-657.	6.4	52
25	Fineâ€scale mapping of 8q24 locus identifies multiple independent risk variants for breast cancer. International Journal of Cancer, 2016, 139, 1303-1317.	5.1	51
26	Combined Associations of a Polygenic Risk Score and Classical Risk Factors With Breast Cancer Risk. Journal of the National Cancer Institute, 2021, 113, 329-337.	6.3	45
27	Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2. Human Molecular Genetics, 2015, 24, 2966-2984.	2.9	40
28	Genome-wide association study of classical Hodgkin lymphoma identifies key regulators of disease susceptibility. Nature Communications, 2017, 8, 1892.	12.8	40
29	Identification and characterization of novel associations in the CASP8/ALS2CR12 region on chromosome 2 with breast cancer risk. Human Molecular Genetics, 2015, 24, 285-298.	2.9	38
30	An intergenic risk locus containing an enhancer deletion in 2q35 modulates breast cancer risk by deregulating IGFBP5 expression. Human Molecular Genetics, 2016, 25, 3863-3876.	2.9	33
31	A network analysis to identify mediators of germline-driven differences in breast cancer prognosis. Nature Communications, 2020, 11, 312.	12.8	30
32	Fine-Scale Mapping of the 4q24 Locus Identifies Two Independent Loci Associated with Breast Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1680-1691.	2.5	24
33	Epigenome-wide association study for lifetime estrogen exposure identifies an epigenetic signature associated with breast cancer risk. Clinical Epigenetics, 2019, 11, 66.	4.1	21
34	Fine scale mapping of the 17q22 breast cancer locus using dense SNPs, genotyped within the Collaborative Oncological Gene-Environment Study (COGs). Scientific Reports, 2016, 6, 32512.	3.3	19
35	Genome-wide association study implicates immune dysfunction in the development of Hodgkin lymphoma. Blood, 2018, 132, 2040-2052.	1.4	17
36	Common variants in breast cancer risk loci predispose to distinct tumor subtypes. Breast Cancer Research. 2022. 24. 2.	5.0	15

3

ANDREAS ENGERT

#	Article	IF	CITATIONS
37	Fine-Mapping of the 1p11.2 Breast Cancer Susceptibility Locus. PLoS ONE, 2016, 11, e0160316.	2.5	12
38	Common Susceptibility Loci for Male Breast Cancer. Journal of the National Cancer Institute, 2021, 113, 453-461.	6.3	12
39	Association of germline genetic variants with breast cancer-specific survival in patient subgroups defined by clinic-pathological variables related to tumor biology and type of systemic treatment. Breast Cancer Research, 2021, 23, 86.	5.0	7
40	Functional annotation of the 2q35 breast cancer risk locus implicates a structural variant in influencing activity of a long-range enhancer element. American Journal of Human Genetics, 2021, 108, 1190-1203.	6.2	6
41	A Genome-Wide Gene-Based Gene–Environment Interaction Study of Breast Cancer in More than 90,000 Women. Cancer Research Communications, 2022, 2, 211-219.	1.7	6
42	CYP3A7*1C allele: linking premenopausal oestrone and progesterone levels with risk of hormone receptor-positive breast cancers. British Journal of Cancer, 2021, 124, 842-854.	6.4	5
43	Genome-wide interaction analysis of menopausal hormone therapy use and breast cancer risk among 62,370 women. Scientific Reports, 2022, 12, 6199.	3.3	2