Jane T Seto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8552708/publications.pdf

Version: 2024-02-01

279798 434195 1,752 33 23 31 h-index citations g-index papers 41 41 41 2338 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nature Genetics, 2007, 39, 1261-1265.	21.4	278
2	An Actn3 knockout mouse provides mechanistic insights into the association between Â-actinin-3 deficiency and human athletic performance. Human Molecular Genetics, 2008, 17, 1076-1086.	2.9	266
3	ACTN3 genotype influences muscle performance through the regulation of calcineurin signaling. Journal of Clinical Investigation, 2013, 123, 4255-4263.	8.2	113
4	Limb–girdle muscular dystrophy: Diagnostic evaluation, frequency and clues to pathogenesis. Neuromuscular Disorders, 2008, 18, 34-44.	0.6	99
5	Deficiency of α-actinin-3 is associated with increased susceptibility to contraction-induced damage and skeletal muscle remodeling. Human Molecular Genetics, 2011, 20, 2914-2927.	2.9	95
6	Therapeutic approaches to muscular dystrophy. Human Molecular Genetics, 2011, 20, R69-R78.	2.9	92
7	A gene for speed: contractile properties of isolated whole EDL muscle from an α-actinin-3 knockout mouse. American Journal of Physiology - Cell Physiology, 2008, 295, C897-C904.	4.6	75
8	\hat{l}_{\pm} -Actinin-3 deficiency results in reduced glycogen phosphorylase activity and altered calcium handling in skeletal muscle. Human Molecular Genetics, 2010, 19, 1335-1346.	2.9	73
9	Mutations in Contactin-1, a Neural Adhesion and Neuromuscular Junction Protein, Cause a Familial Form of Lethal Congenital Myopathy. American Journal of Human Genetics, 2008, 83, 714-724.	6.2	72
10	Progress and prospects of gene therapy clinical trials for the muscular dystrophies. Human Molecular Genetics, 2016, 25, R9-R17.	2.9	62
11	Is evolutionary loss our gain? The role of <i>ACTN3</i> p.Arg577Ter (R577X) genotype in athletic performance, ageing, and disease. Human Mutation, 2018, 39, 1774-1787.	2.5	50
12	The effect of α-actinin-3 deficiency on muscle aging. Experimental Gerontology, 2011, 46, 292-302.	2.8	47
13	NF1 is a critical regulator of muscle development and metabolism. Human Molecular Genetics, 2014, 23, 1250-1259.	2.9	40
14	α-Actinin-3 deficiency is associated with reduced bone mass in human and mouse. Bone, 2011, 49, 790-798.	2.9	37
15	Animal Models of Muscular Dystrophy. Progress in Molecular Biology and Translational Science, 2012, 105, 83-111.	1.7	37
16	Sport and exercise genomics: the FIMS 2019 consensus statement update. British Journal of Sports Medicine, 2020, 54, 969-975.	6.7	37
17	Analysis of the <i> ACTN3 </i> heterozygous genotype suggests that α-actinin-3 controls sarcomeric composition and muscle function in a dose-dependent fashion. Human Molecular Genetics, 2016, 25, 866-877.	2.9	35
18	Gene Replacement Therapies for Duchenne Muscular Dystrophy Using Adeno-Associated Viral Vectors. Current Gene Therapy, 2012, 12, 139-151.	2.0	30

#	Article	IF	CITATIONS
19	Therapy of Genetic Disorders: Novel Therapies for Duchenne Muscular Dystrophy. Current Pediatrics Reports, 2014, 2, 102-112.	4.0	28
20	Properties of extensor digitorum longus muscle and skinned fibers from adult and aged male and female <i>Actn3</i> knockout mice. Muscle and Nerve, 2011, 43, 37-48.	2.2	26
21	\hat{l}_{\pm} -Actinin-3 deficiency alters muscle adaptation in response to denervation and immobilization. Human Molecular Genetics, 2014, 23, 1879-1893.	2.9	26
22	Androgen Action via the Androgen Receptor in Neurons Within the Brain Positively Regulates Muscle Mass in Male Mice. Endocrinology, 2017, 158, 3684-3695.	2.8	26
23	Validation of an automated computational method for skeletal muscle fibre morphometry analysis. Neuromuscular Disorders, 2010, 20, 540-547.	0.6	25
24	The Effect of ACTN3 Gene Doping on Skeletal Muscle Performance. American Journal of Human Genetics, 2018, 102, 845-857.	6.2	17
25	Integrating Transwomen and Female Athletes with Differences of Sex Development (DSD) into Elite Competition: The FIMS 2021 Consensus Statement. Sports Medicine, 2021, 51, 1401-1415.	6.5	15
26	Cullin-3–dependent deregulation of ACTN1 represents a pathogenic mechanism in nemaline myopathy. JCI Insight, 2019, 4, .	5.0	14
27	Exploring the relationship between \hat{l}_{\pm} -actinin-3 deficiency and obesity in mice and humans. International Journal of Obesity, 2017, 41, 1154-1157.	3.4	9
28	Response to the United Nations Human Rights Council's Report on Race and Gender Discrimination in Sport: An Expression of Concern and a Call to Prioritise Research. Sports Medicine, 2021, 51, 839-842.	6.5	8
29	Association Between Hematological Parameters and Iron Metabolism Response After Marathon Race and ACTN3 Genotype. Frontiers in Physiology, 2019, 10, 697.	2.8	7
30	<i>ACTN3</i> genotype influences skeletal muscle mass regulation and response to dexamethasone. Science Advances, 2021, 7, .	10.3	7
31	The MMAAS Project: An Observational Human Study Investigating the Effect of Anabolic Androgenic Steroid Use on Gene Expression and the Molecular Mechanism of Muscle Memory. Clinical Journal of Sport Medicine, 2023, 33, e115-e122.	1.8	2
32	ΑLpha-Actinin-3's Role in the Genetic Control of Muscle Strength and Performance. , 2019, , 323-343.		1
33	LATE BREAKING NEWS E-POSTER PRESENTATION. Neuromuscular Disorders, 2020, 30, S170.	0.6	0