Young Woon Lim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8552578/publications.pdf

Version: 2024-02-01

92 papers

2,252 citations

³⁹⁴⁴²¹ 19 h-index 265206 42 g-index

95 all docs 95 docs citations 95 times ranked 2169 citing authors

#	Article	IF	Citations
1	Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Molecular Phylogenetics and Evolution, 2007, 43, 430-451.	2.7	341
2	Notes, outline and divergence times of Basidiomycota. Fungal Diversity, 2019, 99, 105-367.	12.3	256
3	Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Diversity, 2019, 95, 1-273.	12.3	203
4	Fungal diversity notes 603–708: taxonomic and phylogenetic notes on genera and species. Fungal Diversity, 2017, 87, 1-235.	12.3	165
5	Reviewing the world's edible mushroom species: A new evidenceâ€based classification system. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1982-2014.	11.7	89
6	The quest for a globally comprehensible Russula language. Fungal Diversity, 2019, 99, 369-449.	12.3	53
7	Taxonomic evaluation of selected <i>Ganoderma</i> species and database sequence validation. PeerJ, 2017, 5, e3596.	2.0	44
8	Delimitation of <i>Russula</i> Subgenus <i>Amoenula</i> in Korea Using Three Molecular Markers. Mycobiology, 2013, 41, 191-201.	1.7	42
9	Identifying airborne fungi in Seoul, Korea using metagenomics. Journal of Microbiology, 2014, 52, 465-472.	2.8	42
10	A Biodegradable Secondary Battery and its Biodegradation Mechanism for Ecoâ€Friendly Energyâ€Storage Systems. Advanced Materials, 2021, 33, e2004902.	21.0	42
11	The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Diversity, 2021, 111, 573-588.	12.3	42
12	Distinctive Feature of Microbial Communities and Bacterial Functional Profiles in Tricholoma matsutake Dominant Soil. PLoS ONE, 2016, 11, e0168573.	2.5	39
13	Effect of fruiting body bacteria on the growth of Tricholoma matsutake and its related molds. PLoS ONE, 2018, 13, e0190948.	2.5	36
14	Marine-derived Penicillium in Korea: diversity, enzyme activity, and antifungal properties. Antonie Van Leeuwenhoek, 2014, 106, 331-345.	1.7	34
15	Diversity of Wood-Inhabiting Polyporoid and Corticioid Fungi in Odaesan National Park, Korea. Mycobiology, 2016, 44, 217-236.	1.7	34
16	Root-associated bacteria influencing mycelial growth of Tricholoma matsutake (pine mushroom). Journal of Microbiology, 2018, 56, 399-407.	2.8	30
17	The diversity and ecological roles of Penicillium in intertidal zones. Scientific Reports, 2019, 9, 13540.	3.3	29
18	Diversity of Marine-Derived <i>Aspergillus</i> from Tidal Mudflats and Sea Sand in Korea. Mycobiology, 2016, 44, 237-247.	1.7	25

#	Article	IF	Citations
19	A systematic revision of the ectomycorrhizal genus <i>Laccaria</i> from Korea. Mycologia, 2018, 110, 948-961.	1.9	25
20	Species delimitation of three species within the Russula subgenus Compacta in Korea: R. eccentrica, R. nigricans, and R. subnigricans. Journal of Microbiology, 2014, 52, 631-638.	2.8	21
21	Diversity and Ecology of Marine Algicolous Arthrinium Species as a Source of Bioactive Natural Products. Marine Drugs, 2018, 16, 508.	4.6	20
22	Trichoderma songyi sp. nov., a new species associated with the pine mushroom (Tricholoma) Tj ETQq0 0 0 rgBT /	Overlock :	10 Tf 50 622
23	Diversity and enzyme activity of Penicillium species associated with macroalgae in Jeju Island. Journal of Microbiology, 2016, 54, 646-654.	2.8	18
24	Diversity and effect of Trichoderma isolated from the roots of Pinus densiflora within the fairy ring of pine mushroom (Tricholoma matsutake). PLoS ONE, 2018, 13, e0205900.	2.5	18
25	The genus Arthrinium (Ascomycota, Sordariomycetes, Apiosporaceae) from marine habitats from Korea, with eight new species. IMA Fungus, 2021, 12, 13.	3.8	18
26	<i>Penicillium jejuense</i> sp. nov., isolated from the marine environments of Jeju Island, Korea. Mycologia, 2015, 107, 209-216.	1.9	17
27	Taxonomic revision of the genus Lactarius (Russulales, Basidiomycota) in Korea. Fungal Diversity, 2019, 95, 275-335.	12.3	17
28	Phylogeny and taxonomy of $\langle i \rangle$ Ceriporia $\langle i \rangle$ and other related taxa and description of three new species. Mycologia, 2020, 112, 64-82.	1.9	17
29	Sequence Validation for the Identification of the White-Rot Fungi Bjerkandera in Public Sequence Databases. Journal of Microbiology and Biotechnology, 2014, 24, 1301-1307.	2.1	17
30	Re-evaluation of the taxonomy and diversity of Russula section Foetentinae (Russulales,) Tj ETQq0 0 0 rgBT /Ove	rlock 10 T	f 50 302 Td (
31	Effect of fairy ring bacteria on the growth of Tricholoma matsutake in vitro culture. Mycorrhiza, 2018, 28, 411-419.	2.8	16
32	Fungal Diversity and Enzyme Activity Associated with the Macroalgae, <i>Agarum clathratum</i> Mycobiology, 2019, 47, 50-58.	1.7	15
33	A proposed stepwise screening framework for the selection of polycyclic aromatic hydrocarbon (PAH)-degrading white rot fungi. Bioprocess and Biosystems Engineering, 2020, 43, 767-783.	3.4	15
34	Fungal diversity and enzyme activity associated with sailfin sandfish egg masses in Korea. Fungal Ecology, 2018, 34, 1-9.	1.6	14
35	<i>Penicillium</i> from Rhizosphere Soil in Terrestrial and Coastal Environments in South Korea. Mycobiology, 2020, 48, 431-442.	1.7	14
36	Species Prioritization Based on Spectral Dissimilarity: A Case Study of Polyporoid Fungal Species. Journal of Natural Products, 2021, 84, 298-309.	3.0	14

#	Article	IF	CITATIONS
37	Influence of cellulose nanocrystal addition on the production and characterization of bacterial nanocellulose. International Journal of Biological Macromolecules, 2021, 193, 269-275.	7.5	14
38	A New Record of <i>Penicillium </i> antarcticum from Marine Environments in Korea. Mycobiology, 2014, 42, 109-113.	1.7	13
39	Halo-tolerance of Marine-derived Fungi and their Enzymatic Properties. BioResources, 2015, 10, .	1.0	13
40	New record and enzyme activity of four species in Penicillium section Citrina from marine environments in Korea. Journal of Microbiology, 2015, 53, 219-225.	2.8	13
41	Comparison of the Diversity of Basidiomycetes from Dead Wood of the Manchurian fir (Abies) Tj ETQq1 1 0.7843 Microbial Ecology, 2015, 70, 634-645.	14 rgBT /C 2.8	Overlock 10 13
42	First Report of Eight Milkcap Species Belonging toLactariusandLactifluusin Korea. Mycobiology, 2018, 46, 1-12.	1.7	13
43	Distinguishing homokaryons and heterokaryons in Phellinus sulphurascens using pairing tests and ITS polymorphisms. Antonie Van Leeuwenhoek, 2008, 93, 99-110.	1.7	12
44	Lactarius cucurbitoides (Russulales, Basidiomycota), a new species from South Korea supported by molecular and morphological data. Phytotaxa, 2015, 205, 168.	0.3	12
45	Molecular Taxonomical Re-classification of the Genus <i>Suillus</i> Micheli ex S. F. Gray in South Korea. Mycobiology, 2014, 42, 221-228.	1.7	11
46	Reâ€evaluation of <i>Armillaria</i> and <i>Desarmillaria</i> in South Korea based on <scp>ITS</scp> / <i>tef</i> 1 sequences and morphological characteristics. Forest Pathology, 2018, 48, e12447.	1.1	11
47	Influence of Season and Soil Properties on Fungal Communities of Neighboring Climax Forests (Carpinus cordata and Fraxinus rhynchophylla). Frontiers in Microbiology, 2020, 11, 572706.	3.5	11
48	Investigating Wood Decaying Fungi Diversity in Central Siberia, Russia Using ITS Sequence Analysis and Interaction with Host Trees. Sustainability, 2020, 12, 2535.	3.2	11
49	Successional Variation in the Soil Microbial Community in Odaesan National Park, Korea. Sustainability, 2020, 12, 4795.	3.2	11
50	Taxonomic revision of Russula subsection Amoeninae from South Korea. MycoKeys, 2020, 75, 1-29.	1.9	11
51	Four New Species of <i>Amanita</i> in Inje County, Korea. Mycobiology, 2015, 43, 408-414.	1.7	10
52	New Report of Three Unrecorded Species in <i>Trichoderma harzianum</i> Species Complex in Korea. Mycobiology, 2018, 46, 177-184.	1.7	10
53	Successional Change of the Fungal Microbiome Pine Seedling Roots Inoculated With Tricholoma matsutake. Frontiers in Microbiology, 2020, 11, 574146.	3.5	10
54	Diversity of Trichoderma spp. in Marine Environments and Their Biological Potential for Sustainable Industrial Applications. Sustainability, 2020, 12, 4327.	3.2	10

#	Article	IF	CITATIONS
55	Determination of coleopteran insects associated with spore dispersal of Cryptoporus volvatus (Polyporaceae: Basidiomycota) in Korea. Journal of Asia-Pacific Entomology, 2014, 17, 647-651.	0.9	9
56	Revision of the taxonomic status of the genus Gloeoporus (Polyporales, Basidiomycota) reveals two new species. Mycological Progress, 2018, 17, 855-863.	1.4	9
57	Taxonomic Study of the Genus <i>Pholiota</i> (Strophariaceae, Basidiomycota) in Korea. Mycobiology, 2020, 48, 476-483.	1.7	9
58	Ten New Recorded Species of Macrofungi on Ulleung Island, Korea. Mycobiology, 2017, 45, 286-296.	1.7	8
59	Co-occurrence patterns of wood-decaying fungi and ants in dead pines of South Korea. Journal of Asia-Pacific Entomology, 2019, 22, 1154-1160.	0.9	8
60	The Influence of Microfungi on the Mycelial Growth of Ectomycorrhizal Fungus Tricholoma matsutake. Microorganisms, 2019, 7, 169.	3.6	8
61	New Species of Termitomyces (Lyophyllaceae, Basidiomycota) from Sabah (Northern Borneo), Malaysia. Mycobiology, 2020, 48, 95-103.	1.7	8
62	Different patterns of belowground fungal diversity along altitudinal gradients with respect to microhabitat and guild types. Environmental Microbiology Reports, 2021, 13, 649-658.	2.4	8
63	A Checklist of the Basidiomycetous Macrofungi and a Record of Five New Species from Mt. Oseo in Korea. Mycobiology, 2014, 42, 132-139.	1.7	7
64	Seven New Recorded Species in Five Genera of the Strophariaceae in Korea. Mycobiology, 2016, 44, 137-145.	1.7	7
65	Diversity of fungi associated with roots of Calanthe orchid species in Korea. Journal of Microbiology, 2018, 56, 49-55.	2.8	7
66	Three Unrecorded Species Belonging toPenicilliumSectionSclerotiorafrom Marine Environments in Korea. Mycobiology, 2019, 47, 165-172.	1.7	7
67	Two New Species of <i>Laccaria</i> (Agaricales, Basidiomycota) from Korea. Mycobiology, 2020, 48, 288-295.	1.7	7
68	Cyclohumulanoid Sesquiterpenes Induced by the Noncompetitive Coculture of Phellinus orientoasiaticus and Xylodon flaviporus. Journal of Natural Products, 2022, , .	3.0	7
69	Re-evaluation of the Genus <i>Antrodia</i> (Polyporales, Basidiomycota) in Korea. Mycobiology, 2014, 42, 114-119.	1.7	6
70	A New record of four Penicillium species isolated from Agarum clathratum in Korea. Journal of Microbiology, 2017, 55, 237-246.	2.8	6
71	Three New Recorded Species of the Physalacriaceae on Ulleung Island, Korea. Mycobiology, 2017, 45, 9-14.	1.7	6
72	Guild Patterns of Basidiomycetes Community Associated With Quercus mongolica in Mt. Jeombong, Republic of Korea. Mycobiology, 2018, 46, 13-23.	1.7	6

#	Article	IF	CITATIONS
73	Macrolepiota in Korea: New Records and a New Species. Mycobiology, 2019, 47, 368-377.	1.7	5
74	Taxonomy, comparative genomics and evolutionary insights of Penicillium ucsense: a novel species in series Oxalica. Antonie Van Leeuwenhoek, 2022, 115, 1009-1029.	1.7	5
75	Taxonomic Study of the Genus <i>Abundisporus </i> in Korea. Mycobiology, 2015, 43, 225-230.	1.7	4
76	Five New Wood Decay Fungi (Polyporales and Hymenochaetales) in Korea. Mycobiology, 2016, 44, 146-154.	1.7	4
77	Ectomycorrhizal Fungi Associated with Pinus densiflora Seedlings under Flooding Stress. Sustainability, 2021, 13, 4367.	3.2	4
78	Cellulosic Nanomaterial Production Via Fermentation by Komagataeibacter sp. SFCB22-18 Isolated from Ripened Persimmons. Journal of Microbiology and Biotechnology, 2019, 29, 617-624.	2.1	4
79	Diversity and abundance of humanâ€pathogenic fungi associated with pigeon faeces in urban environments. Molecular Ecology, 2017, 26, 4574-4585.	3.9	3
80	First Report of <i>Buchwaldoboletus lignicola</i> (Boletaceae), a Potentially Endangered Basidiomycete Species, in South Korea. Mycobiology, 2019, 47, 521-526.	1.7	3
81	Fungal diversity living in the root and sporophore of the endemic Korean fern Mankyua chejuense. Fungal Ecology, 2021, 50, 101038.	1.6	3
82	Four Unrecorded <i>Aspergillus</i> Species from the Rhizosphere Soil in South Korea. Mycobiology, 2021, 49, 346-354.	1.7	3
83	Taxonomic study of Collybiopsis (Omphalotaceae, Agaricales) in the Republic of Korea with seven new species. MycoKeys, 2022, 88, 79-108.	1.9	3
84	Taxonomic evaluation of <i>Xylodon</i> (Hymenochaetales, Basidiomycota) in Korea and sequence verification of the corresponding species in GenBank. PeerJ, 2021, 9, e12625.	2.0	3
85	Metschnikowia cf. typographi and other pathogens from the bark beetle Ips sexdentatus – Prevalence, histological and ultrastructural evidence, and molecular characterization. Journal of Invertebrate Pathology, 2017, 143, 69-78.	3.2	2
86	Note of Five Unrecorded Mushrooms Including Three Rare Species on Mount Juwang in Korea. Mycobiology, 2020, 48, 157-168.	1.7	2
87	Addition of Various Cellulosic Components to Bacterial Nanocellulose: A Comparison of Surface Qualities and Crystalline Properties. Journal of Microbiology and Biotechnology, 2021, 31, 1366-1372.	2.1	2
88	Seventeen Unrecorded Species from Gayasan National Park in Korea. Mycobiology, 2020, 48, 184-194.	1.7	1
89	Taxonomic Revision of the Genus <i>Lactifluus</i> (Russulales, Basidiomycota) of South Korea. Mycobiology, 2021, 49, 308-345.	1.7	1
90	Investigation of the Fungal Diversity of the Federated States of Micronesia and the Construction of an Updated Fungal Inventory. Mycobiology, 2021, 49, 551-558.	1.7	1

#	Article	IF	CITATIONS
91	Determination of Diversity, Distribution and Host Specificity of Korean <i>Laccaria</i> Using Four Approaches. Mycobiology, 2021, 49, 461-468.	1.7	O
92	Taxonomy and an Updated Phylogeny of Anomoloma (Amylocorticiales, Basidiomycota). Forests, 2022, 13, 713.	2.1	0