
Guoqing Geng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8551730/publications.pdf Version: 2024-02-01

GUOOING GENC

#	Article	lF	CITATIONS
1	Molecular quantification of the decelerated dissolution of tri-calcium silicate (C3S) due to surface adsorption. Cement and Concrete Research, 2022, 152, 106682.	11.0	8
2	Influence of substrate moisture on the interfacial bonding between calcium silicate hydrate and epoxy. Construction and Building Materials, 2022, 320, 126252.	7.2	25
3	Endowing strength to calcium silicate hydrate (C-S-H) powder by high pressure mechanical compaction. Cement and Concrete Research, 2022, 159, 106858.	11.0	22
4	Micro Xâ€ray diffraction and elemental study on Alâ€tobermorite formation in aged modern concrete. Journal of the American Ceramic Society, 2022, 105, 6924-6937.	3.8	1
5	The physiochemical alterations of calcium silicate hydrate (C-S-H) under magnesium attack. Cement and Concrete Research, 2022, 160, 106901.	11.0	8
6	The interpenetration polymer network in a cement paste–waterborne epoxy system. Cement and Concrete Research, 2021, 139, 106236.	11.0	52
7	Effects of pH on the nano/micro structure of calcium silicate hydrate (C-S-H) under sulfate attack. Cement and Concrete Research, 2021, 140, 106306.	11.0	64
8	Iron speciation in blast furnace slag cements. Cement and Concrete Research, 2021, 140, 106287.	11.0	24
9	Fe(II) interaction with cement phases: Method development, wet chemical studies and X-ray absorption spectroscopy. Journal of Colloid and Interface Science, 2021, 588, 692-704.	9.4	18
10	An in-situ 3D micro-XRD investigation of water uptake by alkali-silica-reaction (ASR) product. Cement and Concrete Research, 2021, 141, 106331.	11.0	26
11	Research on the toughening mechanism of modified nano-silica and silane molecular cages in the multi-scale microfracture of cement-epoxy composite. Cement and Concrete Composites, 2021, 119, 104027.	10.7	10
12	Atomistic structure of alkali-silica reaction products refined from X-ray diffraction and micro X-ray absorption data. Cement and Concrete Research, 2020, 129, 105958.	11.0	38
13	Analysis of atomistic structural deformation characteristics of calcium silicate hydrate in 53-year-old tricalcium silicate paste using atomic pair distribution function. Construction and Building Materials, 2020, 237, 117714.	7.2	15
14	Fe(III) uptake by calcium silicate hydrates. Applied Geochemistry, 2020, 113, 104460.	3.0	31
15	Mechanical behavior and phase change of alkali-silica reaction products under hydrostatic compression. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2020, 76, 674-682.	1.1	11
16	Uptake of iodide by calcium aluminate phases (AFm phases). Applied Geochemistry, 2020, 116, 104559.	3.0	13
17	Microstructural Study of Hydration of C3S in the Presence of Calcium Nitrate Using Scanning Transmission X-Ray Microscopy (STXM). Journal of Nanomaterials, 2020, 2020, 1-9.	2.7	4
18	Advances in characterizing and understanding the microstructure of cementitious materials. Cement and Concrete Research, 2019, 124, 105806.	11.0	104

GUOQING GENG

#	Article	IF	CITATIONS
19	Verifying Cloud Application for the Interaction Correctness Using SoaML and SPIN. , 2019, , .		2
20	Influence of decalcification on structural and mechanical properties of synthetic calcium silicate hydrate (C-S-H). Cement and Concrete Research, 2019, 123, 105793.	11.0	64
21	Synthesis, characterization, and water uptake property of alkali-silica reaction products. Cement and Concrete Research, 2019, 121, 58-71.	11.0	86
22	The Hydration of β- and α′ _H -Dicalcium Silicates: An X-ray Spectromicroscopic Study. ACS Sustainable Chemistry and Engineering, 2019, 7, 2316-2326.	6.7	42
23	The influence of expansive cement on the mechanical, physical, and microstructural properties of hybrid-fiber-reinforced concrete. Cement and Concrete Composites, 2019, 96, 21-32.	10.7	48
24	Modification of poly(ethylene glycol) on the microstructure and mechanical properties of calcium silicate hydrates. Cement and Concrete Research, 2019, 115, 20-30.	11.0	55
25	The chemistry and structure of calcium (alumino) silicate hydrate: A study by XANES, ptychographic imaging, and wide- and small-angle scattering. Cement and Concrete Research, 2019, 115, 367-378.	11.0	104
26	Insights into the interfacial strengthening mechanisms of calcium-silicate-hydrate/polymer nanocomposites. Physical Chemistry Chemical Physics, 2018, 20, 8247-8266.	2.8	53
27	A high-pressure X-ray diffraction study of the crystalline phases in calcium aluminate cement paste. Cement and Concrete Research, 2018, 108, 38-45.	11.0	24
28	Corrosion resistance of fine-grained rebar in mortars designed for high-speed railway construction. European Journal of Environmental and Civil Engineering, 2018, 22, 562-577.	2.1	5
29	Preferred orientation of calcium aluminosilicate hydrate induced by confined compression. Cement and Concrete Research, 2018, 113, 186-196.	11.0	63
30	Synchrotron X-ray nanotomographic and spectromicroscopic study of the tricalcium aluminate hydration in the presence of gypsum. Cement and Concrete Research, 2018, 111, 130-137.	11.0	79
31	Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate. Scientific Reports, 2017, 7, 44032.	3.3	122
32	Nanometer-Resolved Spectroscopic Study Reveals the Conversion Mechanism of CaO·Al ₂ O ₃ ·10H ₂ O to 2CaO·Al ₂ O ₃ ·8H ₂ O and 3CaO·Al ₂ O ₃ ·6H ₂ O at an Elevated Temperature. Crystal Growth	3.0	44
33	and Design, 2017, 17, 4246-4253. Electrochemical Behavior of Fine-Grained Steel in Alkaline Solutions in the Presence of Chlorides. Journal of Materials in Civil Engineering, 2017, 29, .	2.9	14
34	Characterization of the Bonds Developed between Calcium Silicate Hydrate and Polycarboxylate-Based Superplasticizers with Silyl Functionalities. Langmuir, 2017, 33, 3404-3412.	3.5	24
35	Role of Adsorption Phenomena in Cubic Tricalcium Aluminate Dissolution. Langmuir, 2017, 33, 45-55.	3.5	93
36	Interfacial Connection Mechanisms in Calcium–Silicate–Hydrates/Polymer Nanocomposites: A Molecular Dynamics Study. ACS Applied Materials & Interfaces, 2017, 9, 41014-41025.	8.0	106

GUOQING GENG

#	Article	IF	CITATIONS
37	Densification of the interlayer spacing governs the nanomechanical properties of calcium-silicate-hydrate. Scientific Reports, 2017, 7, 10986.	3.3	110
38	Solution chemistry of cubic and orthorhombic tricalcium aluminate hydration. Cement and Concrete Research, 2017, 100, 176-185.	11.0	59
39	Effects of CO ₂ and temperature on the structure and chemistry of C–(A–)S–H investigated by Raman spectroscopy. RSC Advances, 2017, 7, 48925-48933.	3.6	70
40	Ca <i>L</i> _{2,3} -edge near edge X-ray absorption fine structure of tricalcium aluminate, gypsum, and calcium (sulfo)aluminate hydrates. American Mineralogist, 2017, 102, 900-908.	1.9	21
41	A Scanning Transmission X-ray Microscopy Study of Cubic and Orthorhombic C3A and Their Hydration Products in the Presence of Gypsum. Materials, 2016, 9, 745.	2.9	8
42	Effect of fiber types on creep behavior of concrete. Construction and Building Materials, 2016, 105, 416-422.	7.2	65
43	CaCl ₂ -Accelerated Hydration of Tricalcium Silicate: A STXM Study Combined with ²⁹ Si MAS NMR. Journal of Nanomaterials, 2015, 2015, 1-10.	2.7	13
44	Atomic and nano-scale characterization of a 50-year-old hydrated C3S paste. Cement and Concrete Research, 2015, 77, 36-46.	11.0	42