Yan-Ji Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8551538/publications.pdf

Version: 2024-02-01

		394421	454955
111	1,315	19	30
papers	citations	h-index	g-index
111	111	111	1359
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis and kinetics of 2,5-dicyanofuran in the presence of hydroxylamine ionic liquid salts. Chinese Journal of Chemical Engineering, 2023, 53, 310-316.	3.5	5
2	Role of Benzene-1,3,5-Tricarboxylate Ligand in CuO–CeO2 Catalysts Derived from Metal–Organic Frameworks for Carbon Monoxide Oxidation. Catalysis Letters, 2023, 153, 219-229.	2.6	1
3	A core–shell Ni/SiO2@TiO2 catalyst for highly selective one-step synthesis of 2-propylheptanol from n-pentanal. Chinese Journal of Chemical Engineering, 2022, 46, 104-112.	3.5	O
4	Three Dimensional Macroporous Oxygenâ€Deficient TiO2â€x Supported N, P, Coâ€tridoped Carbon as Efficient Oxygen Reduction Electrocatalyst. ChemCatChem, 2022, 14, e202101311.	3.7	1
5	Synergistic Binary Fe–Co Nanocluster Supported on Defective Tungsten Oxide as Efficient Oxygen Reduction Electrocatalyst in Zincâ€Air Battery. Advanced Science, 2022, 9, e2104237.	11.2	39
6	Cobalt Element Effect of Ternary Mesoporous Cerium Lanthanum Solid Solution for the Catalytic Conversion of Methanol and CO2 into Dimethyl Carbonate. Molecules, 2022, 27, 270.	3.8	4
7	Hydrodeoxygenation reactivity of the carbonyl group and carboxyl group and their interaction: taking 2-pentanone, valeric acid, and levulinic acid as examples. Sustainable Energy and Fuels, 2022, 6, 1780-1793.	4.9	1
8	Influence of different microstructures of cobalt on the catalytic activity for amination of ethylene glycol: comparison of HCP cobalt and FCC cobalt. Catalysis Science and Technology, 2022, 12, 3148-3157.	4.1	3
9	AgPd Nanoparticles Anchored on TiO ₂ Derived from a Titanium Metal–Organic Framework for Efficient Dehydrogenation of Formic Acid. ChemCatChem, 2022, 14, .	3.7	7
10	Theoretical analysis and evaluation of reaction routes by "three-parameter difference― RSC Advances, 2022, 12, 12152-12159.	3.6	1
11	Facile Preparation of Millimeterâ€Sized Sodium Alginateâ€Silica Composite Spheres for Highly Selective Adsorption of Heavy Metal Ions. ChemistrySelect, 2022, 7, .	1.5	1
12	Cu/ <scp>CuO_x</scp> @C for efficient selective transfer hydrogenation of furfural to furfuryl alcohol with formic acid. Journal of Chemical Technology and Biotechnology, 2022, 97, 3172-3182.	3.2	3
13	Facile synthesis of EDTA grafted 3D spherical-chain porous silica with high capacity for rapidly selective adsorption of Cu(II) from aqueous solutions. Journal of Porous Materials, 2021, 28, 299-310.	2.6	5
14	Effect of second metal component on the reduction property and catalytic performance of NiO-MO /Nb2O5-TiO2 for direct synthesis of 2-propylheptanol from n-valeraldehyde. Catalysis Communications, 2021, 149, 106209.	3.3	6
15	Effect of Ni/Co mass ratio and NiO–Co ₃ O ₄ loading on catalytic performance of NiO–Co ₃ O ₄ /Nb ₂ O ₅ –TiO ₂ for direct synthesis of 2-propylheptanol from <i>n</i> i>-valeraldehyde. RSC Advances, 2021, 11, 1736-1742.	3.6	8
16	<i>In situ</i> hydrodeoxygenation of vanillin over Ni–Co–P/HAP with formic acid as a hydrogen source. RSC Advances, 2021, 11, 10996-11003.	3.6	17
17	A highly efficient rod-like-CeO2-supported palladium catalyst for the oxidative carbonylation of glycerol to glycerol carbonate. RSC Advances, 2021, 11, 17072-17079.	3.6	5
18	Preparation and catalytic performance of active metal sintered membrane reactor anchored with Pt atoms. RSC Advances, 2021, 11, 2848-2853.	3.6	1

#	Article	IF	CITATIONS
19	Preparation of the Ru/HZSM-5 catalyst and its catalytic performance for the 2-pentanone hydrodeoxygenation reaction. New Journal of Chemistry, 2021, 45, 17692-17698.	2.8	5
20	Improvement of $\langle i \rangle n \langle i \rangle$ -butanol Guerbet condensation: a reaction integration of $\langle i \rangle n \langle i \rangle$ -butanol Guerbet condensation and 1,1-dibutoxybutane hydrolysis. Reaction Chemistry and Engineering, 2021, 6, 1845-1853.	3.7	6
21	Fabrication and characterization of ZrO2 and ZrO2/SiO2 catalysts and their application in the synthesis of methyl N-phenyl carbamate: a study of the reaction mechanism by using in situ FT-IR spectroscopy. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132, 893-906.	1.7	3
22	Application of an immobilized ionic liquid for the preparation of hydroxylamine via hydrolysis of cyclohexanone oxime. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 742-750.	1.2	2
23	NiOâ€MnO 2 / Nb 2 O 5 â€TiO 2 catalyzed reaction integration of butanal selfâ€condensation and successive hydrogenation and its kinetics. Journal of Chemical Technology and Biotechnology, 2021, 96, 1553-1560.	3.2	0
24	A novel and stable hydroxylamine salt generated from betaine hydrochloride and its application in the synthesis of cyclohexanone oxime. Journal of Chemical Technology and Biotechnology, 2021, 96, 1954-1959.	3.2	1
25	Solubilities of Benzene, Toluene, and Ethylbenzene in Deep Eutectic Solvents. Journal of Chemical & Engineering Data, 2021, 66, 2460-2469.	1.9	4
26	Enhanced Electrochemical Performance of LiNiO.5Mn1.5O4 Composite Cathodes for Lithium-lon Batteries by Selective Doping of K+/Clâ^' and K+/Fâ^'. Nanomaterials, 2021, 11, 2323.	4.1	9
27	Improving the Catalytic Stability of Ni/TiO2 for Ethanol Guerbet Condensation: Influence of Second Metal Component. Kinetics and Catalysis, 2021, 62, 632-640.	1.0	2
28	ZIF-67-derived N-doped double layer carbon cage as efficient catalyst for oxygen reduction reaction. Nanotechnology, 2021, 33, .	2.6	1
29	Synergistic catalysis of acid–base bifunctional ionic liquids for pentanal selfâ€condensation reaction. Journal of Chemical Technology and Biotechnology, 2020, 95, 710-718.	3.2	4
30	Influence of noble metals on the catalytic performance of Ni/TiO2 for Ethanol Guerbet condensation. Reaction Kinetics, Mechanisms and Catalysis, 2020, 131, 919-933.	1.7	5
31	Influence of acid-base properties on the catalytic performance of Ni/hydroxyapatite in n-butanol Guerbet condensation. Catalysis Communications, 2020, 146, 106130.	3.3	12
32	Ethanol Guerbet Condensation to nâ€Butanol or C 4 â€C 8 Alcohols over Ni/TiO 2 Catalyst. ChemistrySelect, 2020, 5, 8669-8673.	1.5	5
33	Preparation of Ni-IL/SiO ₂ and its catalytic performance for one-pot sequential synthesis of 2-propylheptanol from <i>n</i> -valeraldehyde. RSC Advances, 2020, 10, 28100-28105.	3.6	8
34	Silicaâ€immobilized acid ionic liquid: An efficient catalyst for pentanal selfâ€condensation. Journal of Chemical Technology and Biotechnology, 2020, 95, 2964-2972.	3.2	8
35	Oneâ€Pot Synthesis of Carbonâ€Based Solid Acid Polymer Catalyst: Efficient Catalysts for Liquidâ€Phase Nitration of Alkanes. ChemistrySelect, 2020, 5, 6652-6657.	1.5	3
36	Polystyrene-Based Hierarchically Macro–Mesoporous Solid Acid: A Robust and Highly Efficient Catalyst for Indirect Hydration of Cyclohexene to Cyclohexanol by a One-Pot Method under Mild Conditions. Industrial & Description of Engineering Chemistry Research, 2020, 59, 6435-6444.	3.7	10

#	Article	IF	Citations
37	Effect of Zr-doping on Pd/Ce $Zr1\hat{a}^{\circ}O2$ catalysts for oxidative carbonylation of phenol. Chinese Journal of Chemical Engineering, 2020, 28, 2592-2599.	3.5	5
38	Synthesis of Hierarchically Porous Amorphous Alloy Hollow Sphere with High Surface Area as Effective and Selective Catalysts for Cinnamaldehyde Hydrogenation. European Journal of Inorganic Chemistry, 2020, 2020, 1184-1191.	2.0	4
39	Preparation and catalytic performance of ZrO ₂ â€supported Pt singleâ€atom and cluster catalyst for hydrogenation of 2,4â€dinitrotoluene to 2,4â€toluenediamine. Journal of Chemical Technology and Biotechnology, 2020, 95, 1675-1682.	3.2	15
40	Embedding Alkyldiamine into Layered αâ€Titanium Phosphate via Directâ€lon Exchange and its Application in Eu ^{III} Removal from Water. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 399-406.	1.2	3
41	New reaction route for bio-based adiponitrile production: Towards the rational design of the reactants and reaction pathways. Chinese Science Bulletin, 2020, 65, 401-409.	0.7	5
42	Preparation of highly selective and stable Cu–Mg–Fe catalyst and its catalytic performance for one-step synthesis of 2-ethylhexanol from n-butyraldehyde. Reaction Kinetics, Mechanisms and Catalysis, 2019, 128, 395-412.	1.7	5
43	Oneâ€Pot Preparation of Methyl N â€Phenyl Carbamate and Zn(OAc) 2 /SiO 2 Catalyst with Enhanced Stability. ChemistrySelect, 2019, 4, 10581-10586.	1.5	1
44	Enhanced catalytic activity over palladium supported on ZrO ₂ @C with NaOH-assisted reduction for decomposition of formic acid. RSC Advances, 2019, 9, 3359-3366.	3.6	12
45	Preparation and hydrogenation performance of single atom Pt catalytic active sites anchored on the surface of metallic supports. Catalysis Communications, 2019, 128, 105709.	3.3	8
46	Green synthesis of benzonitrile using ionic liquid with multiple roles as the recycling agent. RSC Advances, 2019, 9, 17631-17638.	3.6	9
47	Facile fabrication of sponge-like hierarchically porous Ni,La–SrTiO ₃ templated by ⟨i⟩in situ generated carbon deposits and the enhanced visible-light photocatalytic activity. New Journal of Chemistry, 2019, 43, 7409-7418.	2.8	5
48	Thermodynamic Analysis and Experimental Study of Selective Dehydrogenation of 1,2-cyclohexanediol over Cu2+1O/MgO Catalysts. Sustainability, 2019, 11, 902.	3.2	1
49	Pd catalyst supported on CeO ₂ nanotubes with enhanced structural stability toward oxidative carbonylation of phenol. RSC Advances, 2019, 9, 11356-11364.	3.6	7
50	Ni/γâ€Al ₂ O ₃ catalyzed hydrogenation sequence of conjugated double bonds in 2â€ethylâ€2â€hexenal and reaction kinetics. Journal of Chemical Technology and Biotechnology, 2018, 93, 1669-1676.	3.2	6
51	Anion-Controlled Cation-Exchange Process: Intercalating \hat{l}_{\pm} -Titanium Phosphate through Direct Ion Exchange with Alkylammonium Salts. Inorganic Chemistry, 2018, 57, 3753-3760.	4.0	12
52	One-step synthesis of cyclohexylamine from benzene, hydroxylamine and hydrogen over vanadium and ruthenium catalysts. Research on Chemical Intermediates, 2018, 44, 339-354.	2.7	0
53	Catalytic performance of Cu–Mg–Al in the one-step synthesis of 2-ethylhexanol from n-butyraldehyde. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125, 773-788.	1.7	5
54	The Induction Period and Novel Active Species in Zn(OAc)2 Catalyzed Synthesis of Aromatic Carbamates. Catalysis Letters, 2017, 147, 1478-1484.	2.6	8

#	Article	IF	CITATIONS
55	H ₃ PW ₁₂ O ₄₀ /mpg-C ₃ N ₄ as an efficient and reusable bifunctional catalyst in one-pot oxidation–Knoevenagel condensation tandem reaction. Catalysis Science and Technology, 2017, 7, 405-417.	4.1	66
56	$\label{thm:condensation} TiO < sub> 2 < sub> - Catalyzed < i> n < i> - Valeral dehyde Self-Condensation Reaction Mechanism and Kinetics. ACS Catalysis, 2017, 7, 4451-4461.$	11.2	29
57	Application of Hydroxylamine Ionic Liquid Salts in Hydroxylation of Benzene to Phenol with Ammonium Molybdate–Copper Chloride–Ionic Liquid System. Chemistry Letters, 2017, 46, 289-292.	1.3	4
58	A novel bifunctional Pd–ZIF-8/rGO catalyst with spatially separated active sites for the tandem Knoevenagel condensation–reduction reaction. Catalysis Science and Technology, 2017, 7, 5572-5584.	4.1	60
59	Role of foam drainage in producing protein aggregates in foam fractionation. Colloids and Surfaces B: Biointerfaces, 2017, 158, 562-568.	5.0	5
60	Stability, acidity and interaction properties of [Bmim] [SbF6] coupled with concentrated sulfuric acid. Science China Chemistry, 2017, 60, 1243-1249.	8.2	9
61	<i>In Situ</i> Preparation of Nanometer-Scale Zinc Oxide from Zinc Acetate in the Reaction for the Synthesis of Dimethyl Toluene Dicarbamate and Its Catalytic Decomposition Performance. Industrial & Engineering Chemistry Research, 2016, 55, 8011-8017.	3.7	12
62	Prevention of irreversible aggregation of whey soy proteins in their foam fractionation from soy whey wastewater. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 673-682.	1.5	9
63	One-Pot Sequential Aldol Condensation and Hydrogenation of <i>n</i> -Butyraldehyde to 2-Ethylhexanol. Industrial & Engineering Chemistry Research, 2016, 55, 6293-6299.	3.7	19
64	H ₅ PMo ₁₀ V ₂ O ₄₀ immobilized on functionalized chloromethylated polystyrene by electrostatic interactions: a highly efficient and recyclable heterogeneous catalyst for hydroxylation of benzene. Catalysis Science and Technology, 2016, 6, 8005-8015.	4.1	23
65	TiO ₂ -Catalyzed <i>n</i> Valeraldehyde Self-Condensation to 2-Propyl-2-Heptenal: Acid Catalysis or Base Catalysis?. Industrial & Engineering Chemistry Research, 2016, 55, 12326-12333.	3.7	16
66	Reactivity of hydroxylamine ionic liquid salts in the direct synthesis of caprolactam from cyclohexanone under mild conditions. RSC Advances, 2016, 6, 83619-83625.	3.6	15
67	Enhancing protein self-association at the gas–liquid interface for foam fractionation of bovine serum albumin from its highly diluted solution. Chemical Engineering Research and Design, 2016, 109, 638-646.	5.6	9
68	\hat{l}^2 -Cyclodextrin preventing protein aggregation in foam fractionation of bovine serum albumin. Journal of Biotechnology, 2016, 220, 33-34.	3.8	8
69	Hydrolysis of cyclohexyl acetate to cyclohexanol with high selectivity over SO3H-functionalized ionic liquids. Reaction Kinetics, Mechanisms and Catalysis, 2016, 117, 329-339.	1.7	8
70	A novel technology coupling extraction and foam fractionation for separating the total saponins from <i>Achyranthes bidentata</i> . Preparative Biochemistry and Biotechnology, 2016, 46, 666-672.	1.9	6
71	Direct synthesis of 2-ethylhexanol via n-butanal aldol condensation–hydrogenation reaction integration over a Ni/Ce-Al ₂ O ₃ bifunctional catalyst. Green Chemistry, 2015, 17, 2959-2972.	9.0	47
72	Synthesis of 4,4′-Methylenedianiline Catalyzed by SO ₃ H-Functionalized Ionic Liquids. Industrial & Engineering Chemistry Research, 2015, 54, 7571-7579.	3.7	8

#	Article	IF	Citations
73	Oxidative carbonylation of phenol with a Pd-O/CeO2-nanotube catalyst. Chinese Journal of Catalysis, 2015, 36, 1142-1154.	14.0	23
74	DFT study on the adsorption and dissociation of H $<$ sub $>$ 2 $<$ /sub $>$ S on CuO(111) surface. RSC Advances, 2015, 5, 21806-21811.	3.6	50
75	n-Butyraldehyde self-condensation catalyzed by Ce-modified \hat{l}^3 -Al ₂ O ₃ . RSC Advances, 2015, 5, 103523-103533.	3.6	12
76	A novel hydroxylamine ionic liquid salt resulting from the stabilization of NH ₂ OH by a SO ₃ H-functionalized ionic liquid. Chemical Communications, 2015, 51, 1930-1932.	4.1	23
77	Hydration of cyclohexene to cyclohexanol over SO3H-functionalized imidazole ionic liquids. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114, 173-183.	1.7	13
78	One-pot synthesis of dimethyl carbonate from carbon dioxide, cyclohexene oxide, and methanol. Research on Chemical Intermediates, 2015, 41, 4101-4111.	2.7	17
79	Oneâ€pot synthesis of methyl <i>n</i> à€phenyl carbamate from aniline, carbon dioxide and methanol. Journal of Chemical Technology and Biotechnology, 2014, 89, 1553-1558.	3.2	11
80	Highly efficient catalyst PdCl2–CuCl2–KOAc/AC@Al2O3 for gas-phase oxidative carbonylation of methanol to dimethyl carbonate: Preparation and reaction mechanism. Chemical Engineering Journal, 2014, 240, 221-227.	12.7	38
81	<i>n</i> -Butyraldehyde Self-Condensation Catalyzed by Sulfonic Acid Functionalized Ionic Liquids. Industrial & Engineering Chemistry Research, 2014, 53, 16707-16714.	3.7	24
82	Preparation of CuCrO2 and the photocatalytic properties of its composites. Journal of Fuel Chemistry and Technology, 2013, 41, 1473-1480.	2.0	13
83	Synthesis of Toluene-2,4-Bisurea from 2,4-Toluene Diamine and Urea and the Reaction Kinetics. Chinese Journal of Chemical Engineering, 2013, 21, 927-932.	3.5	0
84	Kinetics for Dimethyl Toluene-2,4-dicarbamate Synthesis from 2,4-Diaminotoluene, Urea, and Methanol. Industrial & Engineering Chemistry Research, 2013, 52, 7684-7689.	3.7	5
85	Synthesis of Methyl <i>N</i> -Phenyl Carbamate Catalyzed by Ionic Liquid-Promoted Zinc Acetate. Industrial & Description of the Carbamate Catalyzed by Ionic Liquid-Promoted Zinc Acetate. Industrial & Description of the Carbamate Catalyzed by Ionic Liquid-Promoted Zinc Acetate. Industrial & Description of the Carbamate Catalyzed by Ionic Liquid-Promoted Zinc Acetate. Industrial & Description of the Carbamate Catalyzed by Ionic Liquid-Promoted Zinc Acetate. Industrial & Description of the Carbamate Catalyzed by Ionic Liquid-Promoted Zinc Acetate. Industrial & Description of the Carbamate Catalyzed by Ionic Liquid-Promoted Zinc Acetate. Industrial & Description of the Carbamate Catalyzed by Ionic Liquid-Promoted Zinc Acetate. Industrial & Description of the Carbamate Catalyzed by Ionic Liquid-Promoted Zinc Acetate. Industrial & Description of the Carbamate Catalyzed by Ionic Liquid-Promoted Zinc Acetate. Industrial & Description of the Carbamate Catalyzed by Ionic Liquid-Promoted Zinc Acetate. Industrial & Description of the Carbamate Catalyzed by Ionic Liquid & Description of the Carbamate Catalyzed by Ionic Liquid & Description of the Carbamate Catalyzed by Ionic Liquid & Description of the Carbamate Catalyzed by Ionic Liquid & Description of the Carbamate Catalyzed by Ionic Liquid & Description of the Catalyzed by Ionic	3.7	28
86	Isospecific polymerizations of 1-butene catalyzed by MgCl2/TiCl4/internal donor-AlR3/external donor system. Macromolecular Research, 2012, 20, 985-989.	2.4	6
87	Copolymerizations of ethylene with 1-hexene over MgCl2/SiO2 Bi-supported titanium catalysts: Effect of SiO2 on active site distribution. Macromolecular Research, 2012, 20, 220-222.	2.4	1
88	MgO-PbO Catalyzed Synthesis of Diethylene Glycol Bis(allyl carbonate) by Transesterification Route. Industrial & Engineering Chemistry Research, 2011, 50, 7740-7745.	3.7	6
89	Direct Synthesis of Dimethyl Toluene-2,4-Dicarbamate from 2,4-Toluene Diamine, Urea, and Methanol. Industrial & Engineering Chemistry Research, 2011, 50, 13636-13641.	3.7	12
90	Self-assembly preparation of Au/SiO2 catalyst and its catalysis for cyclohexane oxidation with air. Reaction Kinetics, Mechanisms and Catalysis, 2011, 102, 143-154.	1.7	14

#	Article	IF	CITATIONS
91	Direct amination of toluene to toluidine with hydroxylamine over CuO–V2O5/Al2O3 catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2011, 102, 377-391.	1.7	6
92	Synthesis of bifunctional Pt/MgAPO-5 catalysts and their catalytic performance in the hydrogenation of nitrobenzene to p-aminophenol. Science China Chemistry, 2010, 53, 1514-1519.	8.2	10
93	Co-substituted ATS-type molecular sieves and films for cyclohexane oxidation. Science Bulletin, 2010, 55, 4112-4115.	1.7	1
94	Synthesis and Performance Research of Biodegradable Modified Polyaspartic Acid. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	1
95	Synthesis ,Characterization and Scale Inhibition of Biodegradable Polyaspartic Acid Derivative. , 2009, , .		4
96	A simple method for design of waterâ€using networks with multiple contaminants involving regeneration reuse. AICHE Journal, 2009, 55, 1628-1633.	3.6	33
97	Clean synthesis of methyl Nâ€phenyl carbamate over ZnOâ€TiO ₂ catalyst. Journal of Chemical Technology and Biotechnology, 2009, 84, 48-53.	3.2	19
98	Synthesis of magnetic Pb/Fe3O4/SiO2 and its catalytic activity for propylene carbonate synthesis via urea and 1,2-propylene glycol. Frontiers of Chemical Engineering in China, 2009, 3, 215-218.	0.6	6
99	Synthesis of ZnO whiskers with different aspect ratios by a facile solution route. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1560-1565.	1.8	17
100	Synthesis of ethylene carbonate from urea and ethylene glycol over zinc/iron oxide catalyst. Journal of Chemical Technology and Biotechnology, 2008, 83, 750-755.	3.2	17
101	Synthesis of <i>p</i> â€aminophenol from the hydrogenation of nitrobenzene over metal–solid acid bifunctional catalyst. Journal of Chemical Technology and Biotechnology, 2008, 83, 1466-1471.	3.2	33
102	Europium complexes immobilization on titania via chemical modification of titanium alkoxide. Journal of Materials Chemistry, 2008, 18, 735.	6.7	50
103	Synthesis of Propylene Carbonate from Carbon Dioxide and 1,2-Propylene Glycol over Zinc Acetate Catalyst. Industrial & Engineering Chemistry Research, 2008, 47, 1365-1369.	3.7	51
104	Catalytic synthesis of 1,6-dicarbamate hexane over MgO/ZrO2. Journal of Chemical Technology and Biotechnology, 2007, 82, 209-213.	3.2	14
105	Clean synthesis of propylene carbonate from urea and 1,2-propylene glycol over zinc–iron double oxide catalyst. Journal of Chemical Technology and Biotechnology, 2006, 81, 794-798.	3.2	17
106	Synthesis of Propylene Carbonate from Urea and 1,2-Propylene Glycol over a Zinc Acetate Catalyst. Industrial & Description of the Catalyst Research, 2004, 43, 4038-4042.	3.7	49
107	Catalytic synthesis of toluene-2,4-diisocyanate from dimethyl carbonate. Journal of Chemical Technology and Biotechnology, 2001, 76, 857-861.	3.2	28
108	One-pot synthesis of biomass-derived porous carbon-based composites as an efficient acid–base bifunctional catalyst for self-condensation of <i>n</i> butyraldehyde. Reaction Chemistry and Engineering, 0, , .	3.7	O

#	Article	IF	CITATIONS
109	Theoretical study of decomposition of formic acid over <scp>Pd</scp> catalyst anchored on <scp>N</scp> â€doped graphene. International Journal of Quantum Chemistry, 0, , .	2.0	1
110	Catalytic performance of <scp> Ru/TiO ₂ </scp> on hydrodeoxygenation of levulinic acid dimer, taking sebacic acid as a model compound. Journal of Chemical Technology and Biotechnology, 0, , .	3.2	2
111	Catalyst-free $\langle i \rangle N \langle i \rangle$ -methylation of 3-methylxanthine with dimethyl carbonate in water: green synthesis of theobromine. New Journal of Chemistry, 0, , .	2.8	O