List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8551419/publications.pdf Version: 2024-02-01

		419	207
315	285,938	132	312
papers	citations	h-index	g-index
221	221	221	105993
331	331	331	105883
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Electric Field Effect in Atomically Thin Carbon Films. Science, 2004, 306, 666-669.	12.6	56,177
2	The rise of graphene. Nature Materials, 2007, 6, 183-191.	27.5	35,008
3	The electronic properties of graphene. Reviews of Modern Physics, 2009, 81, 109-162.	45.6	20,779
4	Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438, 197-200.	27.8	18,948
5	Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 2006, 97, 187401.	7.8	12,689
6	Graphene: Status and Prospects. Science, 2009, 324, 1530-1534.	12.6	12,120
7	Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10451-10453.	7.1	10,229
8	Van der Waals heterostructures. Nature, 2013, 499, 419-425.	27.8	8,378
9	Fine Structure Constant Defines Visual Transparency of Graphene. Science, 2008, 320, 1308-1308.	12.6	7,667
10	Detection of individual gas molecules adsorbed on graphene. Nature Materials, 2007, 6, 652-655.	27.5	7,114
11	The structure of suspended graphene sheets. Nature, 2007, 446, 60-63.	27.8	4,511
12	Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane. Science, 2009, 323, 610-613.	12.6	3,748
13	Chiral tunnelling and the Klein paradox inÂgraphene. Nature Physics, 2006, 2, 620-625.	16.7	3,383
14	Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnology, 2008, 3, 210-215.	31.5	3,125
15	Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Physical Review Letters, 2008, 100, 016602.	7.8	2,919
16	Room-Temperature Quantum Hall Effect in Graphene. Science, 2007, 315, 1379-1379.	12.6	2,662
17	Unimpeded Permeation of Water Through Helium-Leak–Tight Graphene-Based Membranes. Science, 2012, 335, 442-444.	12.6	2,552
18	Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science, 2012, 335, 947-950.	12.6	2,268

#	Article	IF	CITATIONS
19	Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science, 2013, 340, 1311-1314.	12.6	2,179
20	Chaotic Dirac Billiard in Graphene Quantum Dots. Science, 2008, 320, 356-358.	12.6	2,098
21	Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes. Science, 2014, 343, 752-754.	12.6	2,060
22	Unconventional quantum Hall effect and Berry's phase of 2π in bilayer graphene. Nature Physics, 2006, 2, 177-180.	16.7	1,785
23	Biased Bilayer Graphene: Semiconductor with a Gap Tunable by the Electric Field Effect. Physical Review Letters, 2007, 99, 216802.	7.8	1,728
24	Uniaxial strain in graphene by Raman spectroscopy: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>G</mml:mi>peak splitting, Grüneisen parameters, and sample orientation. Physical Review B, 2009, 79, .</mml:math 	3.2	1,662
25	Making graphene visible. Applied Physics Letters, 2007, 91, .	3.3	1,653
26	Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nature Physics, 2010, 6, 30-33.	16.7	1,554
27	Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nature Nanotechnology, 2013, 8, 100-103.	31.5	1,543
28	Graphene-Based Liquid Crystal Device. Nano Letters, 2008, 8, 1704-1708.	9.1	1,441
29	Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature. Nano Letters, 2011, 11, 2396-2399.	9.1	1,440
30	Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nature Materials, 2015, 14, 301-306.	27.5	1,397
31	Tunable sieving of ions using graphene oxide membranes. Nature Nanotechnology, 2017, 12, 546-550.	31.5	1,364
32	Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nature Materials, 2007, 6, 198-201.	27.5	1,229
33	Microfabricated adhesive mimicking gecko foot-hair. Nature Materials, 2003, 2, 461-463.	27.5	1,189
34	Fluorographene: A Twoâ€Dimensional Counterpart of Teflon. Small, 2010, 6, 2877-2884.	10.0	1,146
35	Cloning of Dirac fermions in graphene superlattices. Nature, 2013, 497, 594-597.	27.8	1,107
36	Molecular Doping of Graphene. Nano Letters, 2008, 8, 173-177.	9.1	1,025

#	Article	IF	CITATIONS
37	High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nature Nanotechnology, 2017, 12, 223-227.	31.5	996
38	Hunting for Monolayer Boron Nitride: Optical and Raman Signatures. Small, 2011, 7, 465-468.	10.0	950
39	Strong Suppression of Weak Localization in Graphene. Physical Review Letters, 2006, 97, 016801.	7.8	809
40	Raman fingerprint of charged impurities in graphene. Applied Physics Letters, 2007, 91, .	3.3	802
41	Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nature Materials, 2012, 11, 764-767.	27.5	796
42	Strong plasmonic enhancement of photovoltage in graphene. Nature Communications, 2011, 2, 458.	12.8	775
43	Spin-half paramagnetism in graphene induced by point defects. Nature Physics, 2012, 8, 199-202.	16.7	743
44	Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nature Physics, 2014, 10, 451-456.	16.7	737
45	Optical conductivity of graphene in the visible region of the spectrum. Physical Review B, 2008, 78, .	3.2	728
46	Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers. Nano Letters, 2012, 12, 1707-1710.	9.1	724
47	Dirac cones reshaped by interaction effects in suspended graphene. Nature Physics, 2011, 7, 701-704.	16.7	703
48	Proton transport through one-atom-thick crystals. Nature, 2014, 516, 227-230.	27.8	668
49	Anomalously low dielectric constant of confined water. Science, 2018, 360, 1339-1342.	12.6	627
50	Detecting topological currents in graphene superlattices. Science, 2014, 346, 448-451.	12.6	619
51	Macroscopic Graphene Membranes and Their Extraordinary Stiffness. Nano Letters, 2008, 8, 2442-2446.	9.1	607
52	Square ice in graphene nanocapillaries. Nature, 2015, 519, 443-445.	27.8	602
53	Nanofabricated media with negative permeability at visible frequencies. Nature, 2005, 438, 335-338.	27.8	597
54	Making Graphene Luminescent by Oxygen Plasma Treatment. ACS Nano, 2009, 3, 3963-3968.	14.6	587

#	Article	IF	CITATIONS
55	Free-standing graphene at atomic resolution. Nature Nanotechnology, 2008, 3, 676-681.	31.5	575
56	Ultrathin graphene-based membrane with preciseÂmolecular sieving and ultrafast solventÂpermeation. Nature Materials, 2017, 16, 1198-1202.	27.5	549
57	Single-Layer Behavior and Its Breakdown in Twisted Graphene Layers. Physical Review Letters, 2011, 106, 126802.	7.8	547
58	Resonant tunnelling and negative differential conductance in graphene transistors. Nature Communications, 2013, 4, 1794.	12.8	542
59	The rise of graphene. , 2009, , 11-19.		530
60	Negative local resistance caused by viscous electron backflow in graphene. Science, 2016, 351, 1055-1058.	12.6	516
61	Impermeable barrier films and protective coatings based on reduced graphene oxide. Nature Communications, 2014, 5, 4843.	12.8	508
62	Tunable metal–insulator transition in double-layer graphene heterostructures. Nature Physics, 2011, 7, 958-961.	16.7	486
63	Molecular transport through capillaries made with atomic-scale precision. Nature, 2016, 538, 222-225.	27.8	483
64	Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Physical Review B, 2010, 81, .	3.2	477
65	Electron scattering on microscopic corrugations in graphene. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 195-204.	3.4	475
66	Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nature Nanotechnology, 2014, 9, 808-813.	31.5	435
67	Surface-Enhanced Raman Spectroscopy of Graphene. ACS Nano, 2010, 4, 5617-5626.	14.6	433
68	Electronic Properties of Graphene Encapsulated with Different Two-Dimensional Atomic Crystals. Nano Letters, 2014, 14, 3270-3276.	9.1	433
69	Raman Spectroscopy of Graphene and Bilayer under Biaxial Strain: Bubbles and Balloons. Nano Letters, 2012, 12, 617-621.	9.1	431
70	Size effect in ion transport through angstrom-scale slits. Science, 2017, 358, 511-513.	12.6	418
71	Of flying frogs and levitrons. European Journal of Physics, 1997, 18, 307-313.	0.6	407
72	Subjecting a Graphene Monolayer to Tension and Compression. Small, 2009, 5, 2397-2402.	10.0	400

#	Article	IF	CITATIONS
73	Phase transitions in individual sub-micrometre superconductors. Nature, 1997, 390, 259-262.	27.8	388
74	Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nature Materials, 2013, 12, 304-309.	27.5	382
75	Strong Coulomb drag and broken symmetry in double-layer graphene. Nature Physics, 2012, 8, 896-901.	16.7	365
76	Nobel Lecture: Random walk to graphene. Reviews of Modern Physics, 2011, 83, 851-862.	45.6	361
77	Quality Heterostructures from Two-Dimensional Crystals Unstable in Air by Their Assembly in Inert Atmosphere. Nano Letters, 2015, 15, 4914-4921.	9.1	358
78	Limits on Intrinsic Magnetism in Graphene. Physical Review Letters, 2010, 105, 207205.	7.8	349
79	Thermal Conductivity of Graphene in Corbino Membrane Geometry. ACS Nano, 2010, 4, 1889-1892.	14.6	349
80	Effect of a High- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>κ</mml:mi></mml:math> Environment on Charge Carrier Mobility in Graphene. Physical Review Letters, 2009, 102, 206603.	7.8	347
81	Limits on Charge Carrier Mobility in Suspended Graphene due to Flexural Phonons. Physical Review Letters, 2010, 105, 266601.	7.8	347
82	Resonant Scattering by Realistic Impurities in Graphene. Physical Review Letters, 2010, 105, 056802.	7.8	300
83	Electronic properties of graphene. Physica Status Solidi (B): Basic Research, 2007, 244, 4106-4111.	1.5	291
84	Superballistic flow of viscous electron fluid through graphene constrictions. Nature Physics, 2017, 13, 1182-1185.	16.7	288
85	Generating quantizing pseudomagnetic fields by bending graphene ribbons. Physical Review B, 2010, 81, .	3.2	270
86	Cyclotron resonance study of the electron and hole velocity in graphene monolayers. Physical Review B, 2007, 76, .	3.2	269
87	Electrically controlled water permeation through graphene oxide membranes. Nature, 2018, 559, 236-240.	27.8	263
88	Interaction-Driven Spectrum Reconstruction in Bilayer Graphene. Science, 2011, 333, 860-863.	12.6	262
89	Carbon Wonderland. Scientific American, 2008, 298, 90-97.	1.0	260
90	Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nature Communications, 2016, 7, 12587.	12.8	260

#	Article	IF	CITATIONS
91	Generic miniband structure of graphene on a hexagonal substrate. Physical Review B, 2013, 87, .	3.2	259
92	On Resonant Scatterers As a Factor Limiting Carrier Mobility in Graphene. Nano Letters, 2010, 10, 3868-3872.	9.1	256
93	Two Dimensional Electrons in a Lateral Magnetic Superlattice. Physical Review Letters, 1995, 74, 3009-3012.	7.8	255
94	Dissipative Quantum Hall Effect in Graphene near the Dirac Point. Physical Review Letters, 2007, 98, 196806.	7.8	255
95	Giant Nonlocality Near the Dirac Point in Graphene. Science, 2011, 332, 328-330.	12.6	255
96	Sieving hydrogen isotopes through two-dimensional crystals. Science, 2016, 351, 68-70.	12.6	247
97	Interaction phenomena in graphene seen through quantum capacitance. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3282-3286.	7.1	239
98	Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nature Electronics, 2018, 1, 344-349.	26.0	239
99	Diamagnetic levitation: Flying frogs and floating magnets (invited). Journal of Applied Physics, 2000, 87, 6200-6204.	2.5	237
100	Paramagnetic Meissner effect in small superconductors. Nature, 1998, 396, 144-146.	27.8	232
101	WSe ₂ Light-Emitting Tunneling Transistors with Enhanced Brightness at Room Temperature. Nano Letters, 2015, 15, 8223-8228.	9.1	231
102	Dual origin of defect magnetism in graphene and its reversible switching by molecular doping. Nature Communications, 2013, 4, 2010.	12.8	230
103	Limits on gas impermeability of graphene. Nature, 2020, 579, 229-232.	27.8	220
104	Graphene-protected copper and silver plasmonics. Scientific Reports, 2014, 4, 5517.	3.3	217
105	Electronic properties of a biased graphene bilayer. Journal of Physics Condensed Matter, 2010, 22, 175503.	1.8	209
106	Complete steric exclusion of ions and proton transport through confined monolayer water. Science, 2019, 363, 145-148.	12.6	207
107	Density of States and Zero Landau Level Probed through Capacitance of Graphene. Physical Review Letters, 2010, 105, 136801.	7.8	202
108	Nonlocal transport and the hydrodynamic shear viscosity in graphene. Physical Review B, 2015, 92, .	3.2	198

#	Article	IF	CITATIONS
109	Commensurability Effects in Viscosity of Nanoconfined Water. ACS Nano, 2016, 10, 3685-3692.	14.6	198
110	Resonant terahertz detection using graphene plasmons. Nature Communications, 2018, 9, 5392.	12.8	198
111	Measuring Hall viscosity of graphene's electron fluid. Science, 2019, 364, 162-165.	12.6	197
112	Ballistic Hall micromagnetometry. Applied Physics Letters, 1997, 71, 2379-2381.	3.3	194
113	Quantum oscillations of the critical current and high-field superconducting proximity in ballisticÂgraphene. Nature Physics, 2016, 12, 318-322.	16.7	179
114	Graphene bubbles with controllable curvature. Applied Physics Letters, 2011, 99, .	3.3	176
115	Development of a universal stress sensor for graphene and carbon fibres. Nature Communications, 2011, 2, .	12.8	172
116	Magnetization of Mesoscopic Superconducting Disks. Physical Review Letters, 1997, 79, 4653-4656.	7.8	171
117	Infrared spectroscopy of electronic bands in bilayer graphene. Physical Review B, 2009, 79, .	3.2	170
118	Binder-free highly conductive graphene laminate for low cost printed radio frequency applications. Applied Physics Letters, 2015, 106, .	3.3	170
119	Molecular streaming and its voltage control in ångström-scale channels. Nature, 2019, 567, 87-90.	27.8	170
120	Visualizing Poiseuille flow of hydrodynamic electrons. Nature, 2019, 576, 75-79.	27.8	170
121	Capillary condensation under atomic-scale confinement. Nature, 2020, 588, 250-253.	27.8	168
122	Heterostructures Produced from Nanosheet-Based Inks. Nano Letters, 2014, 14, 3987-3992.	9.1	165
123	Non-quantized penetration of magnetic field in the vortex state of superconductors. Nature, 2000, 407, 55-57.	27.8	163
124	Hierarchy of Hofstadter states and replica quantum Hall ferromagnetism in graphene superlattices. Nature Physics, 2014, 10, 525-529.	16.7	161
125	Fermi-edge singularity in resonant tunneling. Physical Review Letters, 1994, 72, 2061-2064.	7.8	160
126	How Close Can One Approach the Dirac Point in Graphene Experimentally?. Nano Letters, 2012, 12, 4629-4634.	9.1	159

#	Article	IF	CITATIONS
127	Highly Flexible and Conductive Printed Graphene for Wireless Wearable Communications Applications. Scientific Reports, 2016, 5, 18298.	3.3	158
128	Diamagnetically stabilized magnet levitation. American Journal of Physics, 2001, 69, 702-713.	0.7	151
129	Nanoscale thermal imaging of dissipation in quantum systems. Nature, 2016, 539, 407-410.	27.8	149
130	Two-dimensional electron and hole gases at the surface of graphite. Physical Review B, 2005, 72, .	3.2	148
131	Nonvolatile Switching in Graphene Field-Effect Devices. IEEE Electron Device Letters, 2008, 29, 952-954.	3.9	148
132	Gap opening in the zeroth Landau level of graphene. Physical Review B, 2009, 80, .	3.2	146
133	Ballistic molecular transport through two-dimensional channels. Nature, 2018, 558, 420-424.	27.8	139
134	Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy. Applied Physics Letters, 2010, 97, .	3.3	138
135	Random Walk to Graphene (Nobel Lecture). Angewandte Chemie - International Edition, 2011, 50, 6966-6985.	13.8	137
136	Van der Waals pressure and its effect on trapped interlayer molecules. Nature Communications, 2016, 7, 12168.	12.8	137
137	Fluidity onset in graphene. Nature Communications, 2018, 9, 4533.	12.8	136
138	Magnet levitation at your fingertips. Nature, 1999, 400, 323-324.	27.8	134
139	Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nature Communications, 2021, 12, 347.	12.8	132
140	Indirect excitons in van der Waals heterostructures at room temperature. Nature Communications, 2018, 9, 1895.	12.8	130
141	Gate Tunable Infrared Phonon Anomalies in Bilayer Graphene. Physical Review Letters, 2009, 103, 116804.	7.8	127
142	Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping. Nature Communications, 2017, 8, 15215.	12.8	119
143	Evidence of flat bands and correlated states in buckled graphene superlattices. Nature, 2020, 584, 215-220.	27.8	118
144	High-temperature quantum oscillations caused by recurring Bloch states in graphene superlattices. Science, 2017, 357, 181-184.	12.6	117

#	Article	IF	CITATIONS
145	Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nature Nanotechnology, 2022, 17, 390-395.	31.5	115
146	Scattering of electrons in graphene by clusters of impurities. Physical Review B, 2009, 79, .	3.2	111
147	Strained Bubbles in van der Waals Heterostructures as Local Emitters of Photoluminescence with Adjustable Wavelength. ACS Photonics, 2019, 6, 516-524.	6.6	110
148	Superconductivity in Ca-doped graphene laminates. Scientific Reports, 2016, 6, 23254.	3.3	109
149	Macroscopic self-reorientation of interacting two-dimensional crystals. Nature Communications, 2016, 7, 10800.	12.8	108
150	Graphene prehistory. Physica Scripta, 2012, T146, 014003.	2.5	107
151	Tunable van Hove singularities and correlated states in twisted monolayer–bilayer graphene. Nature Physics, 2021, 17, 619-626.	16.7	103
152	Raman Fingerprint of Aligned Graphene/h-BN Superlattices. Nano Letters, 2013, 13, 5242-5246.	9.1	102
153	From One Electron to One Hole: Quasiparticle Counting in Graphene Quantum Dots Determined by Electrochemical and Plasma Etching. Small, 2010, 6, 1469-1473.	10.0	98
154	Electrostatically Confined Monolayer Graphene Quantum Dots with Orbital and Valley Splittings. Nano Letters, 2016, 16, 5798-5805.	9.1	93
155	Micromagnetometry of two-dimensional ferromagnets. Nature Electronics, 2019, 2, 457-463.	26.0	93
156	Asymmetric scattering and diffraction of two-dimensional electrons at quantized tubes of magnetic flux. Physical Review Letters, 1992, 69, 2252-2255.	7.8	91
157	Subatomic movements of a domain wall in the Peierls potential. Nature, 2003, 426, 812-816.	27.8	91
158	Quantum capacitance measurements of electron-hole asymmetry and next-nearest-neighbor hopping in graphene. Physical Review B, 2013, 88, .	3.2	88
159	Tuning the valley and chiral quantum state of Dirac electrons in van der Waals heterostructures. Science, 2016, 353, 575-579.	12.6	88
160	Extremely large magnetoresistance in few-layer graphene/boron–nitride heterostructures. Nature Communications, 2015, 6, 8337.	12.8	86
161	Electron hydrodynamics dilemma: Whirlpools or no whirlpools. Physical Review B, 2016, 94, .	3.2	86
162	Fine Structure in Magnetization of Individual Fluxoid States. Physical Review Letters, 2000, 85, 1528-1531.	7.8	84

#	Article	IF	CITATIONS
163	Unraveling the 3D Atomic Structure of a Suspended Graphene/hBN van der Waals Heterostructure. Nano Letters, 2017, 17, 1409-1416.	9.1	84
164	Electron transport in graphene. Physics-Uspekhi, 2008, 51, 744-748.	2.2	83
165	Intercalant-independent transition temperature in superconducting black phosphorus. Nature Communications, 2017, 8, 15036.	12.8	82
166	Electronic phase separation in multilayer rhombohedral graphite. Nature, 2020, 584, 210-214.	27.8	81
167	Phonon-Assisted Resonant Tunneling of Electrons in Graphene–Boron Nitride Transistors. Physical Review Letters, 2016, 116, 186603.	7.8	78
168	Edge currents shunt the insulating bulk in gapped graphene. Nature Communications, 2017, 8, 14552.	12.8	77
169	Submicron sensors of local electric field with single-electron resolution at room temperature. Applied Physics Letters, 2006, 88, 013901.	3.3	75
170	Composite super-moiré lattices in double-aligned graphene heterostructures. Science Advances, 2019, 5, eaay8897.	10.3	74
171	Magnetoresistance of vertical Co-graphene-NiFe junctions controlled by charge transfer and proximity-induced spin splitting in graphene. 2D Materials, 2017, 4, 031004.	4.4	73
172	Quantum resistance metrology in graphene. Applied Physics Letters, 2008, 93, .	3.3	72
173	Direct determination of the crystallographic orientation of graphene edges by atomic resolution imaging. Applied Physics Letters, 2010, 97, 053110.	3.3	70
174	Unusual Suppression of the Superconducting Energy Gap and Critical Temperature in Atomically Thin NbSe ₂ . Nano Letters, 2018, 18, 2623-2629.	9.1	70
175	Giant Magnetodrag in Graphene at Charge Neutrality. Physical Review Letters, 2013, 111, 166601.	7.8	69
176	In situ manipulation of van der Waals heterostructures for twistronics. Science Advances, 2020, 6, .	10.3	69
177	Formation of Monolayer Craphene by Annealing Sacrificial Nickel Thin Films. Journal of Physical Chemistry C, 2009, 113, 16565-16567.	3.1	68
178	Giant oscillations in a triangular network of one-dimensional states in marginally twisted graphene. Nature Communications, 2019, 10, 4008.	12.8	67
179	Stacking Boundaries and Transport in Bilayer Graphene. Nano Letters, 2014, 14, 2052-2057.	9.1	66
180	Electrically pumped single-defect light emitters in WSe ₂ . 2D Materials, 2016, 3, 025038.	4.4	66

#	Article	IF	CITATIONS
181	High thermal conductivity of hexagonal boron nitride laminates. 2D Materials, 2016, 3, 011004.	4.4	66
182	Imaging resonant dissipation from individual atomic defects in graphene. Science, 2017, 358, 1303-1306.	12.6	66
183	Graphene in Multilayered CPP Spin Valves. IEEE Transactions on Magnetics, 2008, 44, 2624-2627.	2.1	65
184	Resonant tunnelling between the chiral Landau states of twisted graphene lattices. Nature Physics, 2015, 11, 1057-1062.	16.7	64
185	High-order fractal states in graphene superlattices. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5135-5139.	7.1	63
186	Indirect Excitons and Trions in MoSe ₂ /WSe ₂ van der Waals Heterostructures. Nano Letters, 2020, 20, 1869-1875.	9.1	63
187	Viscous electron fluids. Physics Today, 2020, 73, 28-34.	0.3	62
188	New nonlocal magnetoresistance effect at the crossover between the classical and quantum transport regimes. Physical Review Letters, 1991, 67, 3014-3017.	7.8	60
189	Perfect proton selectivity in ion transport through two-dimensional crystals. Nature Communications, 2019, 10, 4243.	12.8	60
190	Manifestation of ripples in freeâ€standing graphene in lattice images obtained in an aberrationâ€corrected scanning transmission electron microscope. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1117-1122.	1.8	59
191	Giant photoeffect in proton transport through graphene membranes. Nature Nanotechnology, 2018, 13, 300-303.	31.5	59
192	Water friction in nanofluidic channels made from two-dimensional crystals. Nature Communications, 2021, 12, 3092.	12.8	59
193	Revealing common artifacts due to ferromagnetic inclusions in highly oriented pyrolytic graphite. Europhysics Letters, 2012, 97, 47001.	2.0	58
194	Graphene-hexagonal boron nitride resonant tunneling diodes as high-frequency oscillators. Applied Physics Letters, 2015, 107, .	3.3	58
195	Large tunable valley splitting in edge-free graphene quantum dots on boron nitride. Nature Nanotechnology, 2018, 13, 392-397.	31.5	58
196	Failure of Conductance Quantization in Two-Dimensional Topological Insulators due to Nonmagnetic Impurities. Physical Review Letters, 2019, 122, 016601.	7.8	57
197	Control of excitons in multi-layer van der Waals heterostructures. Applied Physics Letters, 2016, 108, .	3.3	56
198	Scaling of the quantum Hall plateau-plateau transition in graphene. Physical Review B, 2009, 80, .	3.2	55

#	Article	IF	CITATIONS
199	Simultaneous voltage and current density imaging of flowing electrons in two dimensions. Nature Nanotechnology, 2019, 14, 480-487.	31.5	55
200	Proton and Li-Ion Permeation through Graphene with Eight-Atom-Ring Defects. ACS Nano, 2020, 14, 7280-7286.	14.6	55
201	Stacking Order in Graphite Films Controlled by van der Waals Technology. Nano Letters, 2019, 19, 8526-8532.	9.1	54
202	Multiple flux jumps and irreversible behavior of thin Al superconducting rings. Physical Review B, 2003, 67, .	3.2	52
203	Giant Spin-Hall Effect Induced by the Zeeman Interaction in Graphene. Physical Review Letters, 2011, 107, 096601.	7.8	52
204	Landau Level Spectroscopy of Electron-Electron Interactions in Graphene. Physical Review Letters, 2015, 114, 126804.	7.8	52
205	Tunnel field-effect transistors for sensitive terahertz detection. Nature Communications, 2021, 12, 543.	12.8	52
206	Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures. Nature Communications, 2019, 10, 2335.	12.8	51
207	Imaging work and dissipation in the quantum Hall state in graphene. Nature, 2019, 575, 628-633.	27.8	50
208	Breakdown of universal scaling of conductance fluctuations in high magnetic fields. Physical Review Letters, 1992, 69, 1248-1251.	7.8	49
209	Ballistic two-dimensional electrons in a random magnetic field. Physical Review B, 1994, 49, 5749-5752.	3.2	49
210	Memory effects in individual submicrometer ferromagnets. Physical Review B, 1998, 58, 12201-12206.	3.2	48
211	Resonant tunneling through donor molecules. Physical Review B, 1994, 50, 8074-8077.	3.2	47
212	Excess resistivity in graphene superlattices caused by umklapp electron–electron scattering. Nature Physics, 2019, 15, 32-36.	16.7	46
213	Control of electron-electron interaction in graphene by proximity screening. Nature Communications, 2020, 11, 2339.	12.8	46
214	Transport of hydrogen isotopes through interlayer spacing in van der Waals crystals. Nature Nanotechnology, 2018, 13, 468-472.	31.5	45
215	Atomically thin micas as proton-conducting membranes. Nature Nanotechnology, 2019, 14, 962-966.	31.5	45
216	Long-range nontopological edge currents in charge-neutral graphene. Nature, 2021, 593, 528-534.	27.8	44

#	Article	IF	CITATIONS
217	Planar and van der Waals heterostructures for vertical tunnelling single electron transistors. Nature Communications, 2019, 10, 230.	12.8	43
218	Atomically resolved imaging of highly ordered alternating fluorinated graphene. Nature Communications, 2014, 5, 4902.	12.8	42
219	Nonlocal Response and Anamorphosis: The Case of Few-Layer Black Phosphorus. Nano Letters, 2015, 15, 6991-6995.	9.1	42
220	Blue Energy Conversion from Holey-Graphene-like Membranes with a High Density of Subnanometer Pores. Nano Letters, 2020, 20, 8634-8639.	9.1	42
221	Scattering of ballistic electrons at a mesoscopic spot of strong magnetic field. Physical Review B, 2002, 65, .	3.2	41
222	Sub-bandgap Voltage Electroluminescence and Magneto-oscillations in a WSe ₂ Light-Emitting van der Waals Heterostructure. Nano Letters, 2017, 17, 1425-1430.	9.1	41
223	Dâ~'centers probed by resonant tunneling spectroscopy. Physical Review B, 1996, 53, 9554-9557.	3.2	40
224	Even-Denominator Filling Factors in the Thermoelectric Power of a Two-Dimensional Electron Gas. Physical Review Letters, 1996, 76, 3630-3633.	7.8	40
225	Gate-Defined Quantum Confinement in InSe-Based van der Waals Heterostructures. Nano Letters, 2018, 18, 3950-3955.	9.1	40
226	Raman spectroscopy of highly pressurized graphene membranes. Applied Physics Letters, 2016, 108, .	3.3	39
227	Dimensional reduction, quantum Hall effect and layer parity in graphite films. Nature Physics, 2019, 15, 437-442.	16.7	39
228	Cascaded Optical Field Enhancement in Composite Plasmonic Nanostructures. Physical Review Letters, 2010, 105, 246806.	7.8	38
229	Submicron probes for Hall magnetometry over the extended temperature range from helium to room temperature. Journal of Applied Physics, 2003, 93, 10053-10057.	2.5	37
230	Field-effect control of tunneling barrier height by exploiting graphene's low density of states. Journal of Applied Physics, 2013, 113, .	2.5	35
231	Out-of-equilibrium criticalities in graphene superlattices. Science, 2022, 375, 430-433.	12.6	34
232	Composite Au Nanostructures for Fluorescence Studies in Visible Light. Nano Letters, 2010, 10, 874-879.	9.1	33
233	Tunnel spectroscopy of localised electronic states in hexagonal boron nitride. Communications Physics, 2018, 1, .	5.3	33
234	Nonlinear conductance at small driving voltages in quantum point contacts. Physical Review B, 1994, 49, 7813-7816.	3.2	32

#	Article	IF	CITATIONS
235	Spontaneous magnetization changes and nonlocal effects in mesoscopic ferromagnet-superconductor structures. Physical Review B, 2002, 65, .	3.2	32
236	Two-Dimensional Covalent Crystals by Chemical Conversion of Thin van der Waals Materials. Nano Letters, 2019, 19, 6475-6481.	9.1	32
237	Mesoscopic fluctuations in high magnetic fields: Change in behavior due to boundary diffusion. Physical Review B, 1993, 47, 10935-10938.	3.2	31
238	Resistance fluctuations in the quantum Hall regime. Physical Review B, 1994, 50, 4450-4455.	3.2	31
239	Exploring Two-Dimensional Empty Space. Nano Letters, 2021, 21, 6356-6358.	9.1	31
240	Fundamental Relation between Electrical and Thermoelectric Transport Coefficients in the Quantum Hall Regime. Physical Review Letters, 1997, 78, 4621-4624.	7.8	30
241	Long-Range Nonlocal Flow of Vortices in Narrow Superconducting Channels. Physical Review Letters, 2004, 92, 237001.	7.8	30
242	Zeroâ€dimensional states in macroscopic resonant tunneling devices. Applied Physics Letters, 1994, 64, 2563-2565.	3.3	29
243	Exponentially selective molecular sieving through angstrom pores. Nature Communications, 2021, 12, 7170.	12.8	29
244	Giant magneto-birefringence effect and tuneable colouration of 2D crystal suspensions. Nature Communications, 2020, 11, 3725.	12.8	28
245	Positive curvature in the temperature dependence ofHc2inKxBa1â^'xBiO3. Physical Review B, 1996, 54, 6133-6136.	3.2	27
246	Colossal infrared and terahertz magneto-optical activity in a two-dimensional Dirac material. Nature Nanotechnology, 2019, 14, 756-761.	31.5	27
247	Effect of dielectric response on the quantum capacitance of graphene in a strong magnetic field. Physical Review B, 2013, 88, .	3.2	26
248	2D Functional Minerals as Sustainable Materials for Magnetoâ€Optics. Advanced Materials, 2022, 34, e2110464.	21.0	26
249	Strong magnetophonon oscillations in extra-large graphene. Nature Communications, 2019, 10, 3334.	12.8	25
250	Long-range ballistic transport of Brown-Zak fermions in graphene superlattices. Nature Communications, 2020, 11, 5756.	12.8	25
251	Out-of-Plane Dielectric Susceptibility of Graphene in Twistronic and Bernal Bilayers. Nano Letters, 2021, 21, 6678-6683.	9.1	24
252	Translocation of DNA through Ultrathin Nanoslits. Advanced Materials, 2021, 33, e2007682.	21.0	22

#	Article	IF	CITATIONS
253	Quantum-resolved investigations of flux dynamics: Collective and single vortex effects. Physical Review Letters, 1993, 71, 3854-3857.	7.8	21
254	Circular dichroism of magnetophonon resonance in doped graphene. Physical Review B, 2012, 86, .	3.2	21
255	Minibands in twisted bilayer graphene probed by magnetic focusing. Science Advances, 2020, 6, eaay7838.	10.3	21
256	Collective effects in vortex movements in type-II superconductors observed by a method for the registration of individual vortices. Physical Review B, 1992, 46, 324-330.	3.2	20
257	High-field magnetoresistance in a periodically modulated two-dimensional electron gas. Physical Review B, 1992, 46, 4324-4327.	3.2	19
258	Barkhausen statistics from a single domain wall in thin films studied with ballistic Hall magnetometry. Physical Review B, 2006, 74, .	3.2	19
259	Nonlocal response and surface-barrier-induced rectification in Hall-shaped mesoscopic superconductors. Physical Review B, 2005, 72, .	3.2	17
260	Lifting of the Landau level degeneracy in graphene devices in a tilted magnetic field. Physical Review B, 2015, 92, .	3.2	16
261	Magnetophonon spectroscopy of Dirac fermion scattering by transverse and longitudinal acoustic phonons in graphene. Physical Review B, 2019, 100, .	3.2	16
262	Electron Tunneling through Boron Nitride Confirms Marcus–Hush Theory Predictions for Ultramicroelectrodes. ACS Nano, 2020, 14, 993-1002.	14.6	16
263	Scaling approach to tight-binding transport in realistic graphene devices: The case of transverse magnetic focusing. Physical Review B, 2016, 94, .	3.2	15
264	Gas permeation through graphdiyne-based nanoporous membranes. Nature Communications, 2022, 13, .	12.8	15
265	Graphene: Emerging matter in two dimensions. European Physical Journal: Special Topics, 2007, 148, 1-4.	2.6	14
266	Cyclotron resonance of electrons and holes in graphene monolayers. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 237-243.	3.4	14
267	RANDOM WALK TO GRAPHENE. International Journal of Modern Physics B, 2011, 25, 4055-4080.	2.0	14
268	Reflection of ballistic electrons from diffusive regions. Physical Review B, 1994, 49, 2265-2268.	3.2	13
269	Wang et al. reply. Nature, 2015, 528, E3-E3.	27.8	13
270	Graphene-based tunable SQUIDs. Applied Physics Letters, 2017, 110, .	3.3	12

#	Article	IF	CITATIONS
271	Quantitative numerical model for nonlocal quantum diffusion in a distribution of magnetic-flux tubes. Physical Review B, 1992, 46, 14912-14914.	3.2	11
272	Microscopic investigation of the flux dynamics of type-II superconducting films. Physical Review B, 1993, 47, 5146-5150.	3.2	11
273	Magnetotransport in single-layer graphene in a large parallel magnetic field. Physical Review B, 2016, 94, .	3.2	11
274	Supercurrent and multiple Andreev reflections in micrometer-long ballistic graphene Josephson junctions. Nanoscale, 2018, 10, 3020-3025.	5.6	10
275	The Hall effect of an inhomogeneous magnetic field in mesoscopic structures. Journal of Physics Condensed Matter, 1997, 9, 8065-8073.	1.8	9
276	Reply to the Comment by D. Spemann et al Europhysics Letters, 2012, 98, 57007.	2.0	9
277	Tunable spin-orbit coupling in two-dimensional InSe. Physical Review B, 2021, 104, .	3.2	9
278	The edge and bulk electron state dominated magnetotransport in multi-terminal single-crystalline refractory metal nanostructures. Nanotechnology, 2000, 11, 379-382.	2.6	8
279	Enhancement of spin-dependent hole delocalization in degenerate asymmetric double quantum wells. Physical Review B, 1996, 53, 10000-10007.	3.2	7
280	2D Functional Minerals as Sustainable Materials for Magnetoâ€Optics (Adv. Mater. 16/2022). Advanced Materials, 2022, 34, .	21.0	7
281	Many-body blockade of resonant tunneling of two-dimensional electrons. Physical Review B, 1997, 56, 1053-1056.	3.2	6
282	Magneto-Optical Study of Correlated Electron–Hole Layers in Single-Barrier Heterostructures. Physica Status Solidi A, 1997, 164, 587-590.	1.7	6
283	Unambiguous identification of X-point-related resonances in GaAs/AlAs/GaAs tunnel diodes under hydrostatic pressure. Semiconductor Science and Technology, 1993, 8, 1483-1486.	2.0	5
284	TRANSVERSE SPIN TRANSPORT IN GRAPHENE. International Journal of Modern Physics B, 2009, 23, 2641-2646.	2.0	5
285	Graphene's non-equilibrium fermions reveal Doppler-shifted magnetophonon resonances accompanied by Mach supersonic and Landau velocity effects. Nature Communications, 2021, 12, 6392.	12.8	5
286	Reply to: Random interstratification in hydrated graphene oxide membranes and implications for seawater desalination. Nature Nanotechnology, 2022, 17, 134-135.	31.5	5
287	Intrinsic Pinning of a Ferromagnetic Domain Wall in Yttrium Iron Garnet Films with Strong Uniaxial Anisotropy. Journal of Low Temperature Physics, 2005, 139, 65-72.	1.4	4
288	Dissociation of indirect excitons: Discontinuity and bistability in the tunnel current of single-barrier heterostructures. Physical Review B, 1999, 60, 13302-13305.	3.2	3

#	Article	IF	CITATIONS
289	COERCIVITY OF SINGLE PINNING CENTER MEASURED BY HALL MICROMAGNETOMETRY. International Journal of Nanoscience, 2004, 03, 87-94.	0.7	3
290	Magnetization Signature of Topological Surface States in a Non‣ymmorphic Superconductor. Advanced Materials, 2021, 33, e2103257.	21.0	3
291	Universal conductance fluctuations in a multi-subband quantum well. Journal of Physics Condensed Matter, 1994, 6, 5129-5136.	1.8	2
292	Resonant tunnelling quantum dots and wires: some recent problems and progress. Semiconductor Science and Technology, 1994, 9, 1912-1918.	2.0	2
293	METALLIC AND SEMICONDUCTOR HALL MICROPROBES FOR WIDE TEMPERATURE RANGE APPLICATIONS. International Journal of Nanoscience, 2004, 03, 123-130.	0.7	2
294	Intrinsic pinning of a ferromagnetic domain wall in yttrium iron garnet films with strong uniaxial anisotropy. Journal of Low Temperature Physics, 2005, 139, 65-72.	1.4	2
295	Graphene Based Spin Valve Devices. , 2006, , .		2
296	Publisher's Note: Cascaded Optical Field Enhancement in Composite Plasmonic Nanostructures [Phys. Rev. Lett.105, 246806 (2010)]. Physical Review Letters, 2010, 105, .	7.8	2
297	Atomic-Scale Legos. Scientific American, 2014, 311, 50-51.	1.0	2
298	When lost in a multiverse. Nature Physics, 2017, 13, 1142-1142.	16.7	2
299	Ferromagnetic domain wall on nanometer scale. Journal of Physics: Conference Series, 2005, 17, 101-107.	0.4	1
300	European research system must not go bananas. Nature, 2008, 453, 850-850.	27.8	1
301	Cross sectional STEM imaging and analysis of multilayered two dimensional crystal heterostructure devices. Microscopy and Microanalysis, 2015, 21, 107-108.	0.4	1
302	Of flying frogs and levitrons. , 2017, , 615-621.		1
303	Optical suppression of ionized impurity scattering in vertical hotâ€electron transport. Applied Physics Letters, 1992, 61, 3157-3159.	3.3	0
304	MESOSCOPIC FLUCTUATIONS IN HIGH MAGNETIC FIELDS — ARE THEY STILL UNIVERSAL?. Modern Physics Letters B, 1993, 07, 1-12.	1.9	0
305	Even denominator filling factors in the thermoelectric power of a 2DEG. European Physical Journal D, 1996, 46, 2461-2462.	0.4	0
306	Magnetisation of individual mesoscopic superconductors. European Physical Journal D, 1996, 46, 2307-2308.	0.4	0

#	Article	IF	CITATIONS
307	<title>Quenching of the hall effect in localised high magnertic field region</title> . , 2002, , .		Ο
308	Barkhausen effect in a garnet film studied by ballistic hall micromagnetometry. Journal of Physics: Conference Series, 2005, 15, 125-130.	0.4	0
309	Ultrafast non-thermal electron dynamics in single layer graphene. , 2013, , .		Ο
310	Understanding 2D Crystal Vertical Heterostructures at the Atomic Scale Using Advanced Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2017, 23, 1714-1715.	0.4	0
311	With regret, we must leave. New Scientist, 2019, 243, 23.	0.0	0
312	Some Recent Developments in Quantum Transport in Mesoscopic Structures and Quantum Wells. NATO ASI Series Series B: Physics, 1995, , 227-240.	0.2	0
313	Control of excitons in multi-layer van der Waals heterostructures. , 2016, , .		Ο
314	Indirect excitons in van der Waals heterostructures at room temperature. , 2018, , .		0
315	Localized Bright Luminescence of Indirect Excitons and Trions in a Type II Van der Waals Heterostructure. , 2019, , .		0