
## Naomi E Chayen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8551144/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Protein crystallization: from purified protein to diffraction-quality crystal. Nature Methods, 2008, 5, 147-153.                                                                                   | 19.0 | 314       |
| 2  | Experiment and theory for heterogeneous nucleation of protein crystals in a porous medium.<br>Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 597-601. | 7.1  | 233       |
| 3  | Microbatch crystallization under oil $\hat{a} \in$ " a new technique allowing many small-volume crystallization trials. Journal of Crystal Growth, 1992, 122, 176-180.                             | 1.5  | 225       |
| 4  | Turning protein crystallisation from an art into a science. Current Opinion in Structural Biology, 2004, 14, 577-583.                                                                              | 5.7  | 173       |
| 5  | Towards a â€~universal' nucleant for protein crystallization. Trends in Biotechnology, 2009, 27, 99-106.                                                                                           | 9.3  | 121       |
| 6  | Protein crystallization facilitated by molecularly imprinted polymers. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11081-11086.                    | 7.1  | 120       |
| 7  | The role of oil in macromolecular crystallization. Structure, 1997, 5, 1269-1274.                                                                                                                  | 3.3  | 94        |
| 8  | Porous nucleating agents for protein crystallization. Nature Protocols, 2014, 9, 1621-1633.                                                                                                        | 12.0 | 93        |
| 9  | Comparative Studies of Protein Crystallization by Vapour-Diffusion and Microbatch Techniques. Acta<br>Crystallographica Section D: Biological Crystallography, 1998, 54, 8-15.                     | 2.5  | 87        |
| 10 | Methods for separating nucleation and growth in protein crystallisation. Progress in Biophysics and Molecular Biology, 2005, 88, 329-337.                                                          | 2.9  | 70        |
| 11 | Random Microseeding: A Theoretical and Practical Exploration of Seed Stability and Seeding<br>Techniques for Successful Protein Crystallization. Crystal Growth and Design, 2011, 11, 3432-3441.   | 3.0  | 68        |
| 12 | The 1.45Ã three-dimensional structure of C-phycocyanin from the thermophilic cyanobacterium Synechococcus elongatus. Journal of Structural Biology, 2003, 141, 149-155.                            | 2.8  | 67        |
| 13 | Carbon-Nanotube-Based Materials for Protein Crystallization. ACS Applied Materials & amp; Interfaces, 2009, 1, 1203-1210.                                                                          | 8.0  | 59        |
| 14 | Tackling the bottleneck of protein crystallization in the post-genomic era. Trends in Biotechnology, 2002, 20, 98.                                                                                 | 9.3  | 54        |
| 15 | A novel technique for containerless protein crystallization. Protein Engineering, Design and Selection, 1996, 9, 927-929.                                                                          | 2.1  | 53        |
| 16 | Protein crystallization for genomics: towards high-throughput optimization techniques. Acta<br>Crystallographica Section D: Biological Crystallography, 2002, 58, 921-927.                         | 2.5  | 53        |
| 17 | Systematic Improvement of Protein Crystals by Determining the Supersolubility Curves of Phase Diagrams. Biophysical Journal, 2003, 84, 1218-1222.                                                  | 0.5  | 52        |
| 18 | New directions in conventional methods of protein crystallization. Progress in Biophysics and Molecular Biology, 2009, 101, 3-12.                                                                  | 2.9  | 50        |

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The OPCML Tumor Suppressor Functions as a Cell Surface Repressor–Adaptor, Negatively Regulating<br>Receptor Tyrosine Kinases in Epithelial Ovarian Cancer. Cancer Discovery, 2012, 2, 156-171.                                     | 9.4  | 50        |
| 20 | Imprinted polymers assisting protein crystallization. Trends in Biotechnology, 2013, 31, 515-520.                                                                                                                                  | 9.3  | 46        |
| 21 | Bound-solvent structures for microgravity-, ground control-, gel- and microbatch-grown hen<br>egg-white lysozyme crystals at 1.8 A resolution. Acta Crystallographica Section D: Biological<br>Crystallography, 1999, 55, 745-752. | 2.5  | 45        |
| 22 | Control of nucleation in the crystallization of lysozyme. Protein Science, 1993, 2, 113-118.                                                                                                                                       | 7.6  | 41        |
| 23 | Combination of oils and gels for enhancing the growth of protein crystals. Journal of Applied Crystallography, 2002, 35, 140-142.                                                                                                  | 4.5  | 40        |
| 24 | Reductively PEGylated carbon nanomaterials and their use to nucleate 3D protein crystals: a comparison of dimensionality. Chemical Science, 2016, 7, 2916-2923.                                                                    | 7.4  | 40        |
| 25 | Crystallization with oils: a new dimension in macromolecular crystal growth. Journal of Crystal<br>Growth, 1999, 196, 434-441.                                                                                                     | 1.5  | 39        |
| 26 | Improving protein crystal quality by decoupling nucleation and growth in vapor diffusion. Protein Science, 2000, 9, 755-757.                                                                                                       | 7.6  | 39        |
| 27 | Protein crystal nucleation in pores. Scientific Reports, 2017, 7, 35821.                                                                                                                                                           | 3.3  | 38        |
| 28 | Attenuated Total Reflection-FT-IR Spectroscopic Imaging of Protein Crystallization. Analytical Chemistry, 2009, 81, 3769-3775.                                                                                                     | 6.5  | 34        |
| 29 | Structural Basis for Paxillin Binding and Focal Adhesion Targeting of β-Parvin. Journal of Biological Chemistry, 2012, 287, 32566-32577.                                                                                           | 3.4  | 33        |
| 30 | Crystallogenesis studies in microgravity with the Advanced Protein Crystallization Facility on<br>SpaceHab-01. Journal of Crystal Growth, 1997, 181, 79-96.                                                                        | 1.5  | 32        |
| 31 | Droplet Microfluidics XRD Identifies Effective Nucleating Agents for Calcium Carbonate. Advanced Functional Materials, 2019, 29, 1808172.                                                                                          | 14.9 | 31        |
| 32 | A unique octameric structure of Axe2, an intracellular acetyl-xylooligosaccharide esterase<br>from <i>Geobacillus stearothermophilus</i> . Acta Crystallographica Section D: Biological<br>Crystallography, 2014, 70, 261-278.     | 2.5  | 30        |
| 33 | Three-dimensional structure of the human breast cancer resistance protein (BCRP/ABCG2) in an inward-facing conformation. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1725-1735.                        | 2.5  | 30        |
| 34 | Separating nucleation and growth in protein crystallization using dynamic light scattering. Acta<br>Crystallographica Section D: Biological Crystallography, 2002, 58, 1597-1600.                                                  | 2.5  | 29        |
| 35 | Is lysozyme really the ideal model protein?. Journal of Crystal Growth, 2001, 232, 262-264.                                                                                                                                        | 1.5  | 27        |
| 36 | Recent advances in methodology for the crystallization of biological macromolecules. Journal of<br>Crystal Growth, 1999, 198-199, 649-655.                                                                                         | 1.5  | 23        |

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Exploring Carbon Nanomaterial Diversity for Nucleation of Protein Crystals. Scientific Reports, 2016,<br>6, 20053.                                                                                                                          | 3.3  | 23        |
| 38 | Many crystal forms of human immunodeficiency virus reverse transcriptase. Journal of Molecular<br>Biology, 1991, 217, 19-22.                                                                                                                | 4.2  | 22        |
| 39 | A crystallization plate for controlling evaporation in hanging drops. Journal of Applied<br>Crystallography, 2004, 37, 502-503.                                                                                                             | 4.5  | 21        |
| 40 | Crystallization and preliminary crystallographic analysis of GanB, a GH42 intracellular β-galactosidase<br>fromGeobacillus stearothermophilus. Acta Crystallographica Section F: Structural Biology<br>Communications, 2013, 69, 1114-1119. | 0.7  | 21        |
| 41 | Protein crystallization for genomics: throughput versus output. Journal of Structural and<br>Functional Genomics, 2003, 4, 115-120.                                                                                                         | 1.2  | 20        |
| 42 | Size and Shape Determination of Proteins in Solution by a Noninvasive Depolarized Dynamic Light<br>Scattering Instrument. Annals of the New York Academy of Sciences, 2004, 1027, 20-27.                                                    | 3.8  | 20        |
| 43 | High-Throughput Protein Crystallization. Advances in Protein Chemistry and Structural Biology, 2009, 77, 1-22.                                                                                                                              | 2.3  | 20        |
| 44 | Micro ATR FTIR imaging of hanging drop protein crystallisation. Vibrational Spectroscopy, 2012, 63, 492-498.                                                                                                                                | 2.2  | 20        |
| 45 | Hydrophobic Interface-Assisted Protein Crystallization: Theory and Experiment. ACS Applied Materials<br>& Interfaces, 2019, 11, 12931-12940.                                                                                                | 8.0  | 19        |
| 46 | The structure-function relationship of oncogenic LMTK3. Science Advances, 2020, 6, .                                                                                                                                                        | 10.3 | 18        |
| 47 | Characterisation of insulin analogues therapeutically available to patients. PLoS ONE, 2018, 13, e0195010.                                                                                                                                  | 2.5  | 18        |
| 48 | Protein crystal movements and fluid flows during microgravity growth. Philosophical Transactions<br>Series A, Mathematical, Physical, and Engineering Sciences, 1998, 356, 1045-1061.                                                       | 3.4  | 17        |
| 49 | Crystallization of and preliminary X-ray data for the negative regulator (AmiC) of the amidase operon of Pseudomonas aeruginosa. Journal of Molecular Biology, 1991, 222, 869-871.                                                          | 4.2  | 16        |
| 50 | A down-to-Earth approach. Nature, 2007, 448, 658-659.                                                                                                                                                                                       | 27.8 | 16        |
| 51 | Optimization Techniques for Automation and High Throughput. Methods in Molecular Biology, 2007, 363, 175-190.                                                                                                                               | 0.9  | 16        |
| 52 | Space-grown crystals may prove their worth. Nature, 1999, 398, 20-20.                                                                                                                                                                       | 27.8 | 15        |
| 53 | Use of Dual Polarization Interferometry as a Diagnostic Tool for Protein Crystallization. Analytical Chemistry, 2011, 83, 7881-7887.                                                                                                        | 6.5  | 15        |
| 54 | Automating the application of smart materials for protein crystallization. Acta Crystallographica<br>Section D: Biological Crystallography, 2015, 71, 534-540.                                                                              | 2.5  | 15        |

| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Dynamic Screening Experiments to Maximize Hits for Crystallization. Crystal Growth and Design, 2007, 7, 2171-2175.                                                                              | 3.0  | 14        |
| 56 | A Linear Epitope in the N-Terminal Domain of CCR5 and Its Interaction with Antibody. PLoS ONE, 2015, 10, e0128381.                                                                              | 2.5  | 14        |
| 57 | Optimization of Protein Crystallization: The OptiCryst Project. Crystal Growth and Design, 2011, 11, 2112-2121.                                                                                 | 3.0  | 13        |
| 58 | Microgravity Protein Crystallization. Annals of the New York Academy of Sciences, 2002, 974, 591-597.                                                                                           | 3.8  | 10        |
| 59 | Rigorous filtration for protein crystallization. Journal of Applied Crystallography, 2009, 42, 743-744.                                                                                         | 4.5  | 10        |
| 60 | Glargine and degludec: Solution behaviour of higher dose synthetic insulins. Scientific Reports, 2017,<br>7, 7287.                                                                              | 3.3  | 9         |
| 61 | Inactivating mutations and X-ray crystal structure of the tumor suppressor OPCML reveal cancer-associated functions. Nature Communications, 2019, 10, 3134.                                     | 12.8 | 9         |
| 62 | Choosing the Method of Crystallization to Obtain Optimal Results. Crystals, 2019, 9, 106.                                                                                                       | 2.2  | 7         |
| 63 | Analysis of insulin glulisine at the molecular level by X-ray crystallography and biophysical techniques. Scientific Reports, 2021, 11, 1737.                                                   | 3.3  | 7         |
| 64 | Theoretical and experimental investigation of protein crystal nucleation in pores and crevices. IUCrJ, 2021, 8, 270-280.                                                                        | 2.2  | 5         |
| 65 | Crystallization by Controlled Evaporation Leading to High Resolution Crystals of the C1 Domain of<br>Cardiac Myosin Binding Protein-C (cMyBP-C). Crystal Growth and Design, 2009, 9, 1729-1732. | 3.0  | 4         |
| 66 | Grapheneâ $\in$ Based Nucleants for Protein Crystallization. Advanced Functional Materials, 2022, 32, .                                                                                         | 14.9 | 4         |
| 67 | Chlamydia protein Pgp3 studied at high resolution in a new crystal form. IUCrJ, 2018, 5, 439-448.                                                                                               | 2.2  | 3         |
| 68 | Analysis of Glulisine Crystallisation Utilising Phase Diagrams and Nucleants. Crystals, 2019, 9, 462.                                                                                           | 2.2  | 2         |
| 69 | X-ray crystallographic studies of RoAb13 bound to PIYDIN, a part of the N-terminal domain of C-C chemokine receptor 5. IUCrJ, 2021, 8, 678-683.                                                 | 2.2  | 2         |
| 70 | Automation of non-conventional crystallization techniques for screening and optimization. , 2007, ,<br>45-58.                                                                                   |      | 1         |
| 71 | Protein Crystallization. , 2005, , 29-48.                                                                                                                                                       |      | 0         |
| 72 | The Role of Oil in Protein Crystallization. , 2009, , 129-144.                                                                                                                                  |      | 0         |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Electronic carbon-nanotube-based materials for protein crystallization. Acta Crystallographica<br>Section A: Foundations and Advances, 2010, 66, s294-s294.                                                                                       | 0.3 | 0         |
| 74 | Successful crystal formation - the journey from idea to fruition. Acta Crystallographica Section A:<br>Foundations and Advances, 2015, 71, s47-s47.                                                                                               | 0.1 | 0         |
| 75 | Smart materials for increasing the success of protein crystallization. Acta Crystallographica Section<br>A: Foundations and Advances, 2017, 73, C1138-C1138.                                                                                      | 0.1 | 0         |
| 76 | Enhancing the success of crystallization: strategies and techniques. Acta Crystallographica Section<br>A: Foundations and Advances, 2017, 73, C1082-C1082.                                                                                        | 0.1 | 0         |
| 77 | Dual polarization interferometry in macromolecular crystallisation diagnostics. Acta<br>Crystallographica Section A: Foundations and Advances, 2010, 66, s293-s293.                                                                               | 0.3 | 0         |
| 78 | Automated seeding for the optimization of crystal quality. Acta Crystallographica Section A:<br>Foundations and Advances, 2010, 66, s294-s294.                                                                                                    | 0.3 | 0         |
| 79 | Upside-down protein crystallization. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s294-s294.                                                                                                                             | 0.3 | 0         |
| 80 | Attenuated total reflection-FT-IR spectroscopic imaging of protein crystallization. Acta<br>Crystallographica Section A: Foundations and Advances, 2010, 66, s294-s295.                                                                           | 0.3 | 0         |
| 81 | Abstract 1616: The OPCML tumor suppressor negatively regulates a specific repertoire of 5 receptor tyrosine kinases via a novel proteasomal mechanism, and its recombinant derivative is a potent in-vivo anticancer protein therapy. , 2011, , . |     | 0         |
| 82 | How to enhance the success of protein crystallization. Acta Crystallographica Section A:<br>Foundations and Advances, 2016, 72, s173-s173.                                                                                                        | 0.1 | 0         |
| 83 | Enhancing the success of macromolecular crystallization. Acta Crystallographica Section A:<br>Foundations and Advances, 2019, 75, e15-e15.                                                                                                        | 0.1 | Ο         |