
Billy Tsai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8550114/publications.pdf Version: 2024-02-01

ΒΙΙ Ι Υ ΤΟΛΙ

#	Article	IF	CITATIONS
1	The ER transmembrane protein PGRMC1 recruits misfolded proteins for reticulophagic clearance. Autophagy, 2022, 18, 228-230.	9.1	4
2	Nuclear Entry of DNA Tumor Viruses: Finding the LINC in Nuclear Transport. FASEB Journal, 2022, 36, .	0.5	0
3	A specific EMC subunit supports Dengue virus infection by promoting virus membrane fusion essential for cytosolic genome delivery. PLoS Pathogens, 2022, 18, e1010717.	4.7	1
4	How DNA and RNA Viruses Exploit Host Chaperones to Promote Infection. Viruses, 2021, 13, 958.	3.3	7
5	Distinct states of proinsulin misfolding in MIDY. Cellular and Molecular Life Sciences, 2021, 78, 6017-6031.	5.4	18
6	Editorial overview. Current Opinion in Virology, 2021, 50, 171-172.	5.4	0
7	Normal and defective pathways in biogenesis and maintenance of the insulin storage pool. Journal of Clinical Investigation, 2021, 131, .	8.2	39
8	PGRMC1 acts as a size-selective cargo receptor to drive ER-phagic clearance of mutant prohormones. Nature Communications, 2021, 12, 5991.	12.8	21
9	Lunapark-dependent formation of a virus-induced ER exit site contains multi-tubular ER junctions that promote viral ER-to-cytosol escape. Cell Reports, 2021, 37, 110077.	6.4	5
10	Reticulon protects the integrity of the ER membrane during ER escape of large macromolecular protein complexes. Journal of Cell Biology, 2020, 219, .	5.2	16
11	Selective EMC subunits act as molecular tethers of intracellular organelles exploited during viral entry. Nature Communications, 2020, 11, 1127.	12.8	17
12	Ubqln4 Facilitates Endoplasmic Reticulum-to-Cytosol Escape of a Nonenveloped Virus during Infection. Journal of Virology, 2020, 94, .	3.4	7
13	ER functions are exploited by viruses to support distinct stages of their life cycle. Biochemical Society Transactions, 2020, 48, 2173-2184.	3.4	12
14	Golgi-associated BICD adaptors couple ER membrane penetration and disassembly of a viral cargo. Journal of Cell Biology, 2020, 219, .	5.2	8
15	p120 catenin recruits HPV to \hat{I}^3 -secretase to promote virus infection. PLoS Pathogens, 2020, 16, e1008946.	4.7	17
16	SV40 Hijacks Cellular Transport, Membrane Penetration, and Disassembly Machineries to Promote Infection. Viruses, 2019, 11, 917.	3.3	23
17	How non-enveloped viruses hijack host machineries to cause infection. Advances in Virus Research, 2019, 104, 97-122.	2.1	29
18	Cells Deploy a Two-Pronged Strategy to Rectify Misfolded Proinsulin Aggregates. Molecular Cell, 2019, 75, 442-456.e4.	9.7	65

#	Article	IF	CITATIONS
19	The ER Membrane Protein Complex Promotes Biogenesis of Dengue and Zika Virus Non-structural Multi-pass Transmembrane Proteins to Support Infection. Cell Reports, 2019, 27, 1666-1674.e4.	6.4	55
20	Proinsulin misfolding is an early event in the progression to type 2 diabetes. ELife, 2019, 8, .	6.0	103
21	Dynein Engages and Disassembles Cytosol-Localized Simian Virus 40 To Promote Infection. Journal of Virology, 2018, 92, .	3.4	14
22	Misfolded proinsulin in the endoplasmic reticulum during development of beta cell failure in diabetes. Annals of the New York Academy of Sciences, 2018, 1418, 5-19.	3.8	57
23	Bag2 Is a Component of a Cytosolic Extraction Machinery That Promotes Membrane Penetration of a Nonenveloped Virus. Journal of Virology, 2018, 92, .	3.4	22
24	Î ³ -Secretase promotes membrane insertion of the human papillomavirus L2 capsid protein during virus infection. Journal of Cell Biology, 2018, 217, 3545-3559.	5.2	39
25	New Insights into the Physiological Role of Endoplasmic Reticulum-Associated Degradation. Trends in Cell Biology, 2017, 27, 430-440.	7.9	167
26	Exploiting the kinesin-1 molecular motor to generate a virus membrane penetration site. Nature Communications, 2017, 8, 15496.	12.8	31
27	SGTA-Dependent Regulation of Hsc70 Promotes Cytosol Entry of Simian Virus 40 from the Endoplasmic Reticulum. Journal of Virology, 2017, 91, .	3.4	29
28	Chaperone-Driven Degradation of a Misfolded Proinsulin Mutant in Parallel With Restoration of Wild-Type Insulin Secretion. Diabetes, 2017, 66, 741-753.	0.6	32
29	Regulated Erlin-dependent release of the B12 transmembrane J-protein promotes ER membrane penetration of a non-enveloped virus. PLoS Pathogens, 2017, 13, e1006439.	4.7	20
30	How Polyomaviruses Exploit the ERAD Machinery to Cause Infection. Viruses, 2016, 8, 242.	3.3	31
31	The Grp170 nucleotide exchange factor executes a key role during ERAD of cellular misfolded clients. Molecular Biology of the Cell, 2016, 27, 1650-1662.	2.1	25
32	Intracellular trafficking of bacterial toxins. Current Opinion in Cell Biology, 2016, 41, 51-56.	5.4	26
33	Opportunistic intruders: how viruses orchestrate ER functions to infect cells. Nature Reviews Microbiology, 2016, 14, 407-420.	28.6	91
34	Disulfide Mispairing During Proinsulin Folding in the Endoplasmic Reticulum. Diabetes, 2016, 65, 1050-1060.	0.6	47
35	Viruses Utilize Cellular Cues in Distinct Combination to Undergo Systematic Priming and Uncoating. PLoS Pathogens, 2016, 12, e1005467.	4.7	8
36	EMC1-dependent stabilization drives membrane penetration of a partially destabilized non-enveloped virus. ELife, 2016, 5, .	6.0	52

#	Article	IF	CITATIONS
37	A Non-enveloped Virus Hijacks Host Disaggregation Machinery to Translocate across the Endoplasmic Reticulum Membrane. PLoS Pathogens, 2015, 11, e1005086.	4.7	45
38	A Nucleotide Exchange Factor Promotes Endoplasmic Reticulum-to-Cytosol Membrane Penetration of the Nonenveloped Virus Simian Virus 40. Journal of Virology, 2015, 89, 4069-4079.	3.4	29
39	The nucleotide exchange factors Grp170 and Sil1 induce cholera toxin release from BiP to enable retrotranslocation. Molecular Biology of the Cell, 2015, 26, 2181-2189.	2.1	20
40	ERdj5 Reductase Cooperates with Protein Disulfide Isomerase To Promote Simian Virus 40 Endoplasmic Reticulum Membrane Translocation. Journal of Virology, 2015, 89, 8897-8908.	3.4	40
41	PDI reductase acts on <i>Akita</i> mutant proinsulin to initiate retrotranslocation along the Hrd1/Sel1L-p97 axis. Molecular Biology of the Cell, 2015, 26, 3413-3423.	2.1	36
42	The Endoplasmic Reticulum Membrane J Protein C18 Executes a Distinct Role in Promoting Simian Virus 40 Membrane Penetration. Journal of Virology, 2015, 89, 4058-4068.	3.4	37
43	A bacterial toxin and a nonenveloped virus hijack ER-to-cytosol membrane translocation pathways to cause disease. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 477-488.	5.2	12
44	IRE1α is an endogenous substrate of endoplasmic-reticulum-associated degradation. Nature Cell Biology, 2015, 17, 1546-1555.	10.3	173
45	A Cytosolic Chaperone Complexes with Dynamic Membrane J-Proteins and Mobilizes a Nonenveloped Virus out of the Endoplasmic Reticulum. PLoS Pathogens, 2014, 10, e1004007.	4.7	72
46	How Viruses Use the Endoplasmic Reticulum for Entry, Replication, and Assembly. Cold Spring Harbor Perspectives in Biology, 2013, 5, a013250-a013250.	5.5	94
47	The ERdj5-Sel1L complex facilitates cholera toxin retrotranslocation. Molecular Biology of the Cell, 2013, 24, 785-795.	2.1	40
48	A deubiquitinase negatively regulates retro-translocation of nonubiquitinated substrates. Molecular Biology of the Cell, 2013, 24, 3545-3556.	2.1	29
49	Establishment of an In Vitro Transport Assay That Reveals Mechanistic Differences in Cytosolic Events Controlling Cholera Toxin and T-Cell Receptor α Retro-Translocation. PLoS ONE, 2013, 8, e75801.	2.5	17
50	Endoplasmic Reticulum-Dependent Redox Reactions Control Endoplasmic Reticulum-Associated Degradation and Pathogen Entry. Antioxidants and Redox Signaling, 2012, 16, 809-818.	5.4	17
51	Development of an assay to discover novel cytosolic factors for cholera toxin retroâ€ŧranslocation. FASEB Journal, 2012, 26, lb107.	0.5	0
52	ERâ€ŧo•ytosol membrane transport of pathogens. FASEB Journal, 2012, 26, 219.1.	0.5	0
53	Investigating the role of a membrane Jâ€protein in ER quality control and viral trafficking. FASEB Journal, 2012, 26, lb108.	0.5	1
54	How Viruses and Toxins Disassemble to Enter Host Cells. Annual Review of Microbiology, 2011, 65, 287-305.	7.3	32

#	Article	IF	CITATIONS
55	Functional versus decoy receptor-regulated entry of polyomaviruses. Future Virology, 2011, 6, 5-7.	1.8	0
56	A PDI Family Network Acts Distinctly and Coordinately with ERp29 To Facilitate Polyomavirus Infection. Journal of Virology, 2011, 85, 2386-2396.	3.4	86
57	A Large and Intact Viral Particle Penetrates the Endoplasmic Reticulum Membrane to Reach the Cytosol. PLoS Pathogens, 2011, 7, e1002037.	4.7	89
58	BiP and Multiple DNAJ Molecular Chaperones in the Endoplasmic Reticulum Are Required for Efficient Simian Virus 40 Infection. MBio, 2011, 2, e00101-11.	4.1	91
59	The Ero1α-PDI Redox Cycle Regulates Retro-Translocation of Cholera Toxin. Molecular Biology of the Cell, 2010, 21, 1305-1313.	2.1	35
60	Lipids and Proteins Act in Opposing Manners To Regulate Polyomavirus Infection. Journal of Virology, 2010, 84, 9840-9852.	3.4	28
61	The E3 Ubiquitin Ligases Hrd1 and gp78 Bind to and Promote Cholera Toxin Retro-Translocation. Molecular Biology of the Cell, 2010, 21, 140-151.	2.1	69
62	A Virus Takes an "L―Turn to Find Its Receptor. Cell Host and Microbe, 2010, 8, 301-302.	11.0	0
63	Cellular Entry of Polyomaviruses. Current Topics in Microbiology and Immunology, 2010, 343, 177-194.	1.1	39
64	The C-Terminal Domain of ERp29 Mediates Polyomavirus Binding, Unfolding, and Infection. Journal of Virology, 2009, 83, 1483-1491.	3.4	24
65	Early Events during BK Virus Entry and Disassembly. Journal of Virology, 2009, 83, 1350-1358.	3.4	117
66	Ganglioside GT1b Is a Putative Host Cell Receptor for the Merkel Cell Polyomavirus. Journal of Virology, 2009, 83, 10275-10279.	3.4	67
67	Generating an Unfoldase from Thioredoxin-like Domains. Journal of Biological Chemistry, 2009, 284, 13045-13056.	3.4	17
68	A Lipid Receptor Sorts Polyomavirus from the Endolysosome to the Endoplasmic Reticulum to Cause Infection. PLoS Pathogens, 2009, 5, e1000465.	4.7	106
69	Derlin-1 Facilitates the Retro-Translocation of Cholera Toxin. Molecular Biology of the Cell, 2008, 19, 877-884.	2.1	99
70	A Chaperone-Activated Nonenveloped Virus Perforates the Physiologically Relevant Endoplasmic Reticulum Membrane. Journal of Virology, 2007, 81, 12996-13004.	3.4	72
71	Penetration of Nonenveloped Viruses into the Cytoplasm. Annual Review of Cell and Developmental Biology, 2007, 23, 23-43.	9.4	121
72	Protein disulfide isomerase–like proteins play opposing roles during retrotranslocation. Journal of Cell Biology, 2006, 173, 853-859.	5.2	109

#	Article	IF	CITATIONS
73	Identification of Gangliosides GD1b and GT1b as Receptors for BK Virus. Journal of Virology, 2006, 80, 1361-1366.	3.4	164
74	ERp29 Triggers a Conformational Change in Polyomavirus to Stimulate Membrane Binding. Molecular Cell, 2005, 20, 289-300.	9.7	148
75	The intracellular voyage of cholera toxin: going retro. Trends in Biochemical Sciences, 2003, 28, 639-645.	7.5	236
76	Gangliosides are receptors for murine polyoma virus and SV40. EMBO Journal, 2003, 22, 4346-4355.	7.8	357
77	Gangliosides That Associate with Lipid Rafts Mediate Transport of Cholera and Related Toxins from the Plasma Membrane to Endoplasmic Reticulm. Molecular Biology of the Cell, 2003, 14, 4783-4793.	2.1	212
78	Unfolded cholera toxin is transferred to the ER membrane and released from protein disulfide isomerase upon oxidation by Ero1. Journal of Cell Biology, 2002, 159, 207-216.	5.2	133
79	Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nature Reviews Molecular Cell Biology, 2002, 3, 246-255.	37.0	593
80	Role of ubiquitination in retroâ€ŧranslocation of cholera toxin and escape of cytosolic degradation. EMBO Reports, 2002, 3, 1222-1227.	4.5	135
81	Protein Disulfide Isomerase Acts as a Redox-Dependent Chaperone to Unfold Cholera Toxin. Cell, 2001, 104, 937-948.	28.9	455