
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8550012/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Genome-Wide Screen for Context-Dependent Tumor Suppressors Identified Using in Vivo Models for<br>Neoplasia in <i>Drosophila</i> . G3: Genes, Genomes, Genetics, 2020, 10, 2999-3008.                                                     | 0.8 | 3         |
| 2  | Promoter Proximal Pausing Limits Tumorous Growth Induced by the Yki Transcription Factor in <i>Drosophila</i> . Genetics, 2020, 216, 67-77.                                                                                               | 1.2 | 3         |
| 3  | <i>dTcf/Pangolin</i> suppresses growth and tumor formation in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14055-14064.                                                | 3.3 | 3         |
| 4  | Pgc suppresses the zygotically-acting RNA decay pathway to protect germ plasm RNAs in the<br><i>Drosophila</i> embryo. Development (Cambridge), 2019, 146, .                                                                              | 1.2 | 7         |
| 5  | Identification and characterization of novel conserved RNA structures in Drosophila. BMC Genomics, 2018, 19, 899.                                                                                                                         | 1.2 | 6         |
| 6  | Metabolic control of PPAR activity by aldehyde dehydrogenase regulates invasive cell behavior and predicts survival in hepatocellular and renal clear cell carcinoma. BMC Cancer, 2018, 18, 1180.                                         | 1.1 | 22        |
| 7  | Warburg Effect Metabolism Drives Neoplasia in a Drosophila Genetic Model of Epithelial Cancer.<br>Current Biology, 2018, 28, 3220-3228.e6.                                                                                                | 1.8 | 33        |
| 8  | <i>miRâ€31</i> mutants reveal continuous glial homeostasis in the adult <i>Drosophila</i> brain. EMBO<br>Journal, 2017, 36, 1215-1226.                                                                                                    | 3.5 | 16        |
| 9  | The chromatin remodeling BAP complex limits tumor promoting activity of the Hippo pathway effector<br>Yki to prevent neoplastic transformation in <i>Drosophila</i> epithelia. DMM Disease Models and<br>Mechanisms, 2017, 10, 1201-1209. | 1.2 | 13        |
| 10 | Drosophila as a Model to Study the Link between Metabolism and Cancer. Journal of Developmental<br>Biology, 2017, 5, 15.                                                                                                                  | 0.9 | 22        |
| 11 | DUB3 Deubiquitylating Enzymes Regulate Hippo Pathway Activity by Regulating the Stability of ITCH,<br>LATS and AMOT Proteins. PLoS ONE, 2017, 12, e0169587.                                                                               | 1.1 | 19        |
| 12 | USP21 regulates Hippo pathway activity by mediating MARK protein turnover. Oncotarget, 2017, 8,<br>64095-64105.                                                                                                                           | 0.8 | 18        |
| 13 | Cancer in Drosophila. Current Topics in Developmental Biology, 2016, 116, 181-199.                                                                                                                                                        | 1.0 | 44        |
| 14 | Deubiquitylating enzyme USP9x regulates hippo pathway activity by controlling angiomotin protein<br>turnover. Cell Discovery, 2016, 2, 16001.                                                                                             | 3.1 | 34        |
| 15 | Cell Competition Drives the Formation of Metastatic Tumors in a Drosophila Model of Epithelial<br>Tumor Formation. Current Biology, 2016, 26, 419-427.                                                                                    | 1.8 | 90        |
| 16 | A conformation-induced fluorescence method for microRNA detection. Nucleic Acids Research, 2016, 44, e92-e92.                                                                                                                             | 6.5 | 46        |
| 17 | Control of <i>Drosophila</i> type I and type II central brain neuroblast proliferation<br>by <i>bantam</i> microRNA. Development (Cambridge), 2015, 142, 3713-20.                                                                         | 1.2 | 27        |
| 18 | Feedback regulation on PTEN/AKT pathway by the ER stress kinase PERK mediated by interaction with the<br>Vault complex. Cellular Signalling, 2015, 27, 436-442.                                                                           | 1.7 | 31        |

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A neuroprotective role for microRNA miR-1000 mediated by limiting glutamate excitotoxicity. Nature<br>Neuroscience, 2015, 18, 379-385.                                                                        | 7.1 | 67        |
| 20 | Regulation of Pattern Formation and Gene Amplification During <i>Drosophila</i> Oogenesis by the miR-318 microRNA. Genetics, 2015, 200, 255-265.                                                              | 1.2 | 27        |
| 21 | miR-965 controls cell proliferation and migration during tissue morphogenesis in the Drosophila abdomen. ELife, 2015, 4, .                                                                                    | 2.8 | 24        |
| 22 | Systematic Study of Drosophila MicroRNA Functions Using a Collection of Targeted Knockout<br>Mutations. Developmental Cell, 2014, 31, 784-800.                                                                | 3.1 | 131       |
| 23 | Everything old is new again: (linc)RNAs make proteins!. EMBO Journal, 2014, 33, 937-938.                                                                                                                      | 3.5 | 37        |
| 24 | miRNAs and aging: A genetic perspective. Ageing Research Reviews, 2014, 17, 3-8.                                                                                                                              | 5.0 | 35        |
| 25 | Coordination of insulin and Notch pathway activities by microRNA miR-305 mediates adaptive homeostasis in the intestinal stem cells of the <i>Drosophila</i> gut. Genes and Development, 2014, 28, 2421-2431. | 2.7 | 66        |
| 26 | Opposing activities of the <scp>R</scp> as and <scp>H</scp> ippo pathways converge on regulation of <scp>YAP</scp> protein turnover. EMBO Journal, 2014, 33, 2447-2457.                                       | 3.5 | 102       |
| 27 | Crosstalk between Epithelial and Mesenchymal Tissues in Tumorigenesis and Imaginal Disc<br>Development. Current Biology, 2014, 24, 1476-1484.                                                                 | 1.8 | 44        |
| 28 | Viral Small T Oncoproteins Transform Cells by Alleviating Hippo-Pathway-Mediated Inhibition of the<br>YAP Proto-oncogene. Cell Reports, 2014, 8, 707-713.                                                     | 2.9 | 36        |
| 29 | The Hippo pathway acts via p53 and microRNAs to control proliferation and proapoptotic gene expression during tissue growth. Biology Open, 2013, 2, 822-828.                                                  | 0.6 | 46        |
| 30 | Maternal Loss of miRNAs Leads to Increased Variance in Primordial Germ Cell Numbers in Drosophila<br>melanogaster. G3: Genes, Genomes, Genetics, 2013, 3, 1573-1576.                                          | 0.8 | 26        |
| 31 | ER stress potentiates insulin resistance through PERK-mediated FOXO phosphorylation. Genes and Development, 2013, 27, 441-449.                                                                                | 2.7 | 119       |
| 32 | miR-124 controls male reproductive success in Drosophila. ELife, 2013, 2, e00640.                                                                                                                             | 2.8 | 34        |
| 33 | miR-989 Is Required for Border Cell Migration in the Drosophila Ovary. PLoS ONE, 2013, 8, e67075.                                                                                                             | 1.1 | 27        |
| 34 | Abstract A22: Mechanisms of oncogenic cooperation between EGFR/Ras and Hippo pathways inDrosophilaand human cellular transformation models. , 2013, , .                                                       |     | 0         |
| 35 | Oncogenic cooperation between SOCS family proteins and EGFR identified using a <i>Drosophila</i> epithelial transformation model. Genes and Development, 2012, 26, 1602-1611.                                 | 2.7 | 71        |
| 36 | Time is of the essence: microRNAs and age-associated neurodegeneration. Cell Research, 2012, 22, 1218-1220.                                                                                                   | 5.7 | 14        |

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | MicroRNA Transgene Overexpression Complements Deficiency-Based Modifier Screens in <i>Drosophila</i> . Genetics, 2012, 190, 617-626.                                                                                                            | 1.2 | 30        |
| 38 | The Oscillating miRNA 959-964 Cluster Impacts Drosophila Feeding Time and Other Circadian Outputs.<br>Cell Metabolism, 2012, 16, 601-612.                                                                                                       | 7.2 | 57        |
| 39 | <i>Drosophila</i> miR-124 regulates neuroblast proliferation through its target <i>anachronism</i> .<br>Development (Cambridge), 2012, 139, 1427-1434.                                                                                          | 1.2 | 61        |
| 40 | Mutual Repression by Bantam miRNA and Capicua Links the EGFR/MAPK and Hippo Pathways in Growth Control. Current Biology, 2012, 22, 651-657.                                                                                                     | 1.8 | 81        |
| 41 | Notch-mediated repression of bantam miRNA contributes to boundary formation in the <i>Drosophila</i> wing. Development (Cambridge), 2011, 138, 3781-3789.                                                                                       | 1.2 | 75        |
| 42 | MAPK/ERK Signaling Regulates Insulin Sensitivity to Control Glucose Metabolism in Drosophila. PLoS<br>Genetics, 2011, 7, e1002429.                                                                                                              | 1.5 | 114       |
| 43 | Protocols for Use of Homologous Recombination Gene Targeting to Produce MicroRNA Mutants in<br>Drosophila. Methods in Molecular Biology, 2011, 732, 99-120.                                                                                     | 0.4 | 15        |
| 44 | Rescue of Drosophila Melanogaster l(2)35Aa lethality is only mediated by polypeptide<br>GalNAc-transferase pgant35A, but not by the evolutionary conserved human ortholog<br>GalNAc-transferase-T11. Glycoconjugate Journal, 2010, 27, 435-444. | 1.4 | 14        |
| 45 | Notch Signaling: Filopodia Dynamics Confer Robustness. Current Biology, 2010, 20, R802-R804.                                                                                                                                                    | 1.8 | 9         |
| 46 | The miRNA machinery targets Mei-P26 and regulates Myc protein levels in the Drosophila wing. EMBO<br>Journal, 2010, 29, 1688-1698.                                                                                                              | 3.5 | 47        |
| 47 | MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. Genes and Development, 2010, 24, 1339-1344.                                                                                                         | 2.7 | 340       |
| 48 | Drosophila microRNAs 263a/b Confer Robustness during Development by Protecting Nascent Sense<br>Organs from Apoptosis. PLoS Biology, 2010, 8, e1000396.                                                                                         | 2.6 | 100       |
| 49 | MAP4K3 regulates body size and metabolism in Drosophila. Developmental Biology, 2010, 344, 150-157.                                                                                                                                             | 0.9 | 57        |
| 50 | <i>Drosophila</i> miR-14 regulates insulin production and metabolism through its target,<br><i>sugarbabe</i> . Genes and Development, 2010, 24, 2748-2753.                                                                                      | 2.7 | 121       |
| 51 | microRNAs in CNS Development and Neurodegeneration: Insights from Drosophila Genetics. Research and Perspectives in Neurosciences, 2010, , 69-77.                                                                                               | 0.4 | 1         |
| 52 | Immunopurification of Ago1 miRNPs selects for a distinct class of microRNA targets. Proceedings of the United States of America, 2009, 106, 15085-15090.                                                                                        | 3.3 | 43        |
| 53 | Glycosphingolipids control the extracellular gradient of the <i>Drosophila</i> EGFR ligand Gurken.<br>Development (Cambridge), 2009, 136, 551-561.                                                                                              | 1.2 | 22        |
| 54 | <i>Drosophila</i> Minus is required for cell proliferation and influences Cyclin E turnover. Genes and Development, 2009, 23, 1998-2003.                                                                                                        | 2.7 | 13        |

| #  | Article                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Recombinase-Mediated Cassette Exchange Provides a Versatile Platform for Gene Targeting: Knockout of miR-31b. Genetics, 2009, 183, 399-402.                               | 1.2  | 31        |
| 56 | Use of microRNA sponges to explore tissue-specific microRNA functions in vivo. Nature Methods, 2009, 6, 873-874.                                                          | 9.0  | 32        |
| 57 | Regulation of Tissue Growth through Nutrient Sensing. Annual Review of Genetics, 2009, 43, 389-410.                                                                       | 3.2  | 265       |
| 58 | Mei-P26 regulates microRNAs and cell growth in the Drosophila ovarian stem cell lineage. Nature, 2008, 454, 241-245.                                                      | 13.7 | 222       |
| 59 | TOR complex 2 is needed for cell cycle progression and anchorage-independent growth of MCF7 and PC3 tumor cells. BMC Cancer, 2008, 8, 282.                                | 1.1  | 53        |
| 60 | microRNAs in neurodegeneration. Current Opinion in Neurobiology, 2008, 18, 292-296.                                                                                       | 2.0  | 114       |
| 61 | Temporal Reciprocity of miRNAs and Their Targets during the Maternal-to-Zygotic Transition in Drosophila. Current Biology, 2008, 18, 501-506.                             | 1.8  | 246       |
| 62 | Nutritional Control of Protein Biosynthetic Capacity by Insulin via Myc in Drosophila. Cell<br>Metabolism, 2008, 7, 21-32.                                                | 7.2  | 224       |
| 63 | TORCing Up Metabolic Control in the Brain. Cell Metabolism, 2008, 7, 357-358.                                                                                             | 7.2  | 7         |
| 64 | A single Hox locus in <i>Drosophila</i> produces functional microRNAs from opposite DNA strands.<br>Genes and Development, 2008, 22, 8-13.                                | 2.7  | 205       |
| 65 | microRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in <i>Drosophila</i> . Genes and Development, 2007, 21, 2277-2282.  | 2.7  | 173       |
| 66 | On the mechanism of wing size determination in fly development. Proceedings of the National<br>Academy of Sciences of the United States of America, 2007, 104, 3835-3840. | 3.3  | 327       |
| 67 | Re-evaluating AKT regulation: role of TOR complex 2 in tissue growth. Genes and Development, 2007, 21, 632-637.                                                           | 2.7  | 121       |
| 68 | Glycosphingolipids with extended sugar chain have specialized functions in development and behavior of Drosophila. Developmental Biology, 2007, 306, 736-749.             | 0.9  | 38        |
| 69 | The Conserved microRNA MiR-8 Tunes Atrophin Levels to Prevent Neurodegeneration in Drosophila.<br>Cell, 2007, 131, 136-145.                                               | 13.5 | 246       |
| 70 | Isolation of microRNA targets by miRNP immunopurification. Rna, 2007, 13, 1198-1204.                                                                                      | 1.6  | 268       |
| 71 | Identification of Novel Drosophila melanogaster MicroRNAs. PLoS ONE, 2007, 2, e1265.                                                                                      | 1.1  | 22        |
| 72 | microRNA Functions. Annual Review of Cell and Developmental Biology, 2007, 23, 175-205.                                                                                   | 4.0  | 2,617     |

5

| #  | Article                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | DEVELOPMENTAL BIOLOGY: Mixed Messages in Early Development. Science, 2006, 312, 65-66.                                                                          | 6.0  | 10        |
| 74 | The Hippo Pathway Regulates the bantam microRNA to Control Cell Proliferation and Apoptosis in Drosophila. Cell, 2006, 126, 767-774.                            | 13.5 | 373       |
| 75 | On the role of glypicans in the process of morphogen gradient formation. Developmental Biology, 2006, 300, 512-522.                                             | 0.9  | 53        |
| 76 | Structural insights into the Notch-modifying glycosyltransferase Fringe. Nature Structural and Molecular Biology, 2006, 13, 945-946.                            | 3.6  | 35        |
| 77 | Genome-Wide Analysis of mRNAs Regulated by Drosha and Argonaute Proteins in Drosophila melanogaster. Molecular and Cellular Biology, 2006, 26, 2965-2975.       | 1.1  | 125       |
| 78 | Denoising feedback loops by thresholdinga new role for microRNAs. Genes and Development, 2006, 20, 2769-2772.                                                   | 2.7  | 87        |
| 79 | Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes and Development, 2006, 20, 417-422.                                              | 2.7  | 211       |
| 80 | Boundary formation in theDrosophila wing: Functional dissection of Capricious and Tartan.<br>Developmental Dynamics, 2005, 233, 804-810.                        | 0.8  | 36        |
| 81 | Principles of MicroRNA–Target Recognition. PLoS Biology, 2005, 3, e85.                                                                                          | 2.6  | 2,019     |
| 82 | Gain-of-Function Screen for Genes That Affect Drosophila Muscle Pattern Formation. PLoS Genetics,<br>2005, 1, e55.                                              | 1.5  | 47        |
| 83 | Not miR-ly muscular: microRNAs and muscle development. Genes and Development, 2005, 19, 2261-2264.                                                              | 2.7  | 32        |
| 84 | Egghead and Brainiac Are Essential for Glycosphingolipid Biosynthesis in Vivo. Journal of Biological<br>Chemistry, 2005, 280, 4858-4863.                        | 1.6  | 55        |
| 85 | A Genetic Screen in Drosophila for Identifying Novel Components of the Hedgehog Signaling Pathway.<br>Genetics, 2005, 170, 173-184.                             | 1.2  | 33        |
| 86 | 4E-BP functions as a metabolic brake used under stress conditions but not during normal growth.<br>Genes and Development, 2005, 19, 1844-1848.                  | 2.7  | 224       |
| 87 | The Growth Regulators warts/lats and melted Interact in a Bistable Loop to Specify Opposite Fates in<br>Drosophila R8 Photoreceptors. Cell, 2005, 122, 775-787. | 13.5 | 163       |
| 88 | Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR<br>Evolution. Cell, 2005, 123, 1133-1146.                          | 13.5 | 979       |
| 89 | Drosophila Melted Modulates FOXO and TOR Activity. Developmental Cell, 2005, 9, 271-281.                                                                        | 3.1  | 109       |
| 90 | Tumor Suppressor Properties of the ESCRT-II Complex Component Vps25 in Drosophila. Developmental<br>Cell, 2005, 9, 711-720.                                     | 3.1  | 301       |

| #   | Article                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | molting defective is required for ecdysone biosynthesis. Developmental Biology, 2005, 280, 362-372.                                                                                                 | 0.9  | 52        |
| 92  | Ligand-binding and signaling properties of the Ax[M1] form of Notch. Mechanisms of Development, 2005, 122, 479-486.                                                                                 | 1.7  | 15        |
| 93  | Proximodistal subdivision ofDrosophilalegs and wings: theelbow-no ocelligene complex.<br>Development (Cambridge), 2004, 131, 767-774.                                                               | 1.2  | 34        |
| 94  | Slik Sterile-20 kinase regulates Moesin activity to promote epithelial integrity during tissue growth.<br>Genes and Development, 2004, 18, 2243-2248.                                               | 2.7  | 84        |
| 95  | Connecting proliferation and apoptosis in development and disease. Nature Reviews Molecular Cell<br>Biology, 2004, 5, 805-815.                                                                      | 16.1 | 179       |
| 96  | Osa modulates the expression of Apterous target genes in the Drosophila wing. Mechanisms of Development, 2004, 121, 491-497.                                                                        | 1.7  | 13        |
| 97  | Opposing Activities of Dally-like Glypican at High and Low Levels of Wingless Morphogen Activity.<br>Developmental Cell, 2004, 7, 503-512.                                                          | 3.1  | 202       |
| 98  | Spatial and temporal regulation of the homeotic selector gene Antennapedia is required for the establishment of leg identity in Drosophila. Developmental Biology, 2004, 267, 462-472.              | 0.9  | 34        |
| 99  | Long-range signalling by touch. Nature, 2003, 426, 503-504.                                                                                                                                         | 13.7 | 6         |
| 100 | bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila. Cell, 2003, 113, 25-36.                                 | 13.5 | 1,889     |
| 101 | The Secret Life of Smoothened. Developmental Cell, 2003, 5, 823-824.                                                                                                                                | 3.1  | 2         |
| 102 | Towards a complete description of the microRNA complement of animal genomes. Genome Biology, 2003, 4, 228.                                                                                          | 13.9 | 71        |
| 103 | Wingless and Notch signaling provide cell survival cues and control cell proliferation during wing development. Development (Cambridge), 2003, 130, 6533-6543.                                      | 1.2  | 130       |
| 104 | distal antennaanddistal antenna relatedencode nuclear proteins containing pipsqueak motifs<br>involved in antenna development inDrosophila. Development (Cambridge), 2003, 130, 1171-1180.          | 1.2  | 79        |
| 105 | Drosophila egghead Encodes a β1,4-Mannosyltransferase Predicted to Form the Immediate Precursor<br>Glycosphingolipid Substrate for brainiac. Journal of Biological Chemistry, 2003, 278, 1411-1414. | 1.6  | 58        |
| 106 | The Drosophila Sterile-20 Kinase Slik Controls Cell Proliferation and Apoptosis during Imaginal Disc<br>Development. PLoS Biology, 2003, 1, e35.                                                    | 2.6  | 48        |
| 107 | Identification of Drosophila MicroRNA Targets. PLoS Biology, 2003, 1, e60.                                                                                                                          | 2.6  | 689       |
| 108 | A re-evaluation of the contributions of Apterous and Notch to the dorsoventral lineage restriction boundary in the Drosophilawing. Development (Cambridge), 2003, 130, 553-562.                     | 1.2  | 43        |

| #   | Article                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | The Drosophila Gene brainiac Encodes a Glycosyltransferase Putatively Involved in Glycosphingolipid<br>Synthesis. Journal of Biological Chemistry, 2002, 277, 32421-32429. | 1.6  | 59        |
| 110 | A naturally occurring alternative product of the mastermind locus that represses notch signalling.<br>Mechanisms of Development, 2002, 115, 101-105.                       | 1.7  | 17        |
| 111 | Drosophila's Insulin/PI3-Kinase Pathway Coordinates Cellular Metabolism with Nutritional<br>Conditions. Developmental Cell, 2002, 2, 239-249.                              | 3.1  | 632       |
| 112 | Short-Range Cell Interactions and Cell Survival in the Drosophila Wing. Developmental Cell, 2002, 2, 797-805.                                                              | 3.1  | 92        |
| 113 | HSPG Modification by the Secreted Enzyme Notum Shapes the Wingless Morphogen Gradient.<br>Developmental Cell, 2002, 2, 667-676.                                            | 3.1  | 227       |
| 114 | Shaping Morphogen Gradients. Cell, 2001, 105, 559-562.                                                                                                                     | 13.5 | 160       |
| 115 | The LRR Proteins Capricious and Tartan Mediate Cell Interactions during DV Boundary Formation in the Drosophila Wing. Cell, 2001, 106, 785-794.                            | 13.5 | 130       |
| 116 | Limb development: Getting down to the ground state. Current Biology, 2001, 11, R1025-R1027.                                                                                | 1.8  | 10        |
| 117 | <i>msh</i> specifies dorsal cell fate in the <i>Drosophila</i> wing. Development (Cambridge), 2001, 128, 3263-3268.                                                        | 1.2  | 17        |
| 118 | Regulation of Apterous activity in <i>Drosophila</i> wing development. Development (Cambridge), 2001, 128, 4615-4622.                                                      | 1.2  | 38        |
| 119 | Glycosyltransferase activity of Fringe modulates Notch–Delta interactions. Nature, 2000, 406, 411-415.                                                                     | 13.7 | 652       |
| 120 | Wingless gradient formation in the Drosophila wing. Current Biology, 2000, 10, 293-300.                                                                                    | 1.8  | 404       |
| 121 | Subdividing Cell Populations in the Developing Limbs of Drosophila: Do Wing Veins and Leg Segments Define Units of Growth Control?. Developmental Biology, 2000, 217, 1-9. | 0.9  | 23        |
| 122 | Hedgehog Induces Opposite Changes in Turnover and Subcellular Localization of Patched and Smoothened. Cell, 2000, 102, 521-531.                                            | 13.5 | 492       |
| 123 | Dpp Gradient Formation in the Drosophila Wing Imaginal Disc. Cell, 2000, 103, 971-980.                                                                                     | 13.5 | 435       |
| 124 | Proximal distal axis formation in the Drosophila leg: distinct functions of Teashirt and Homothorax<br>in the proximal leg. Mechanisms of Development, 2000, 94, 47-56.    | 1.7  | 73        |
| 125 | New growth factors for imaginal discs. BioEssays, 1999, 21, 718-720.                                                                                                       | 1.2  | 21        |
| 126 | Notch Signaling Is Not Sufficient to Define the Affinity Boundary between Dorsal and Ventral<br>Compartments. Molecular Cell, 1999, 4, 1073-1078.                          | 4.5  | 31        |

| #   | Article                                                                                                                                          | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Regulation of LIM Homeodomain Activity In Vivo. Molecular Cell, 1999, 4, 267-273.                                                                | 4.5  | 111       |
| 128 | Formation of morphogen gradients in the Drosophila wing. Seminars in Cell and Developmental<br>Biology, 1999, 10, 335-344.                       | 2.3  | 106       |
| 129 | Boundary Formation in Drosophila Wing: Notch Activity Attenuated by the POU Protein Nubbin. , 1998, 281, 409-413.                                |      | 61        |
| 130 | Problems and paradigms: Morphogens and pattern formation. BioEssays, 1997, 19, 721-729.                                                          | 1.2  | 179       |
| 131 | Evolutionary origin of insect wings from ancestral gills. Nature, 1997, 385, 627-630.                                                            | 13.7 | 220       |
| 132 | Proximal–distal axis formation in the Drosophila leg. Nature, 1997, 388, 139-145.                                                                | 13.7 | 347       |
| 133 | Wnt signal transduction: more than one way to skin a (β-)cat?. Trends in Cell Biology, 1996, 6, 287-290.                                         | 3.6  | 16        |
| 134 | Controlling growth of the wing: Vestigial integrates signals from the compartment boundaries.<br>BioEssays, 1996, 18, 855-858.                   | 1.2  | 30        |
| 135 | Specification of the wing by localized expression of wingless protein. Nature, 1996, 381, 316-318.                                               | 13.7 | 205       |
| 136 | Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing.<br>Nature, 1996, 381, 387-393.                      | 13.7 | 621       |
| 137 | ORGANIZING SPATIAL PATTERN IN LIMB DEVELOPMENT. Annual Review of Cell and Developmental Biology, 1996, 12, 161-180.                              | 4.0  | 139       |
| 138 | Signal transduction by cAMP-dependent protein kinase A in Drosophila limb patterning. Nature, 1995,<br>373, 711-715.                             | 13.7 | 169       |
| 139 | Trans- and cis-acting requirements for blastodermal expression of the head gap gene buttonhead.<br>Mechanisms of Development, 1995, 53, 235-245. | 1.7  | 49        |
| 140 | Distinguishable functions for engrailed and Invected in anterior–posterior patterning in the<br>Drosopila wing. Nature, 1995, 376, 424-427.      | 13.7 | 116       |
| 141 | Cell interaction between compartments establishes the proximal-distal axis of Drosophila legs.<br>Nature, 1994, 372, 175-179.                    | 13.7 | 333       |
| 142 | Cell Fate Determination: When is a determinant a determinant?. Current Biology, 1994, 4, 420-422.                                                | 1.8  | 6         |
| 143 | Wingless: from embryo to adult. Trends in Genetics, 1993, 9, 189-192.                                                                            | 2.9  | 16        |
| 144 | A Drosophila homologue of human Sp1 is a head-specific segmentation gene. Nature, 1993, 366, 690-694.                                            | 13.7 | 156       |

| #   | Article                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Homeotic genes of the bithorax complex repress limb development in the abdomen of the Drosophila embryo through the target gene Distal-less. Cell, 1992, 71, 437-450.                     | 13.5 | 350       |
| 146 | Early development of leg and wing primordia in the Drosophila embryo. Mechanisms of Development, 1991, 33, 229-240.                                                                       | 1.7  | 91        |
| 147 | Establishment of imaginal discs and histoblast nests in Drosophila. Mechanisms of Development, 1991, 34, 11-20.                                                                           | 1.7  | 35        |
| 148 | Drosophila headlines. Trends in Genetics, 1991, 7, 267-272.                                                                                                                               | 2.9  | 95        |
| 149 | Specification of limb development in the Drosophila embryo by positional cues from segmentation genes. Nature, 1990, 343, 173-177.                                                        | 13.7 | 210       |
| 150 | Mediation of Drosophila head development by gap-like segmentation genes. Nature, 1990, 346, 482-485.                                                                                      | 13.7 | 268       |
| 151 | Proximal-distal pattern formation in <i>Drosophila</i> : cell autonomous requirement for<br><i>Distal-less</i> gene activity in limb development. EMBO Journal, 1989, 8, 2045-2055.       | 3.5  | 209       |
| 152 | Proximal-distal pattern formation inDrosophila: graded requirement forDistal-less gene activity<br>during limb development. Roux's Archives of Developmental Biology, 1989, 198, 157-169. | 1.2  | 60        |
| 153 | Distal-less encodes a homoeodomain protein required for limb development in Drosophila. Nature,<br>1989, 338, 432-434.                                                                    | 13.7 | 381       |
| 154 | Immunological comparison of desmosomal components from several bovine tissues. Journal of<br>Cellular Biochemistry, 1984, 26, 35-45.                                                      | 1.2  | 73        |
| 155 | Desmosomal Antigens Are Not Recognized by the Majority of Pemphigus Autoimmune Sera. Journal of<br>Investigative Dermatology, 1983, 80, 475-480.                                          | 0.3  | 23        |