Tomas F Domingues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8549555/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Changes in leaf functional traits with leaf age: when do leaves decrease their photosynthetic capacity in Amazonian trees?. Tree Physiology, 2022, 42, 922-938.	3.1	14
2	Local hydrological gradients structure high intraspecific variability in plant hydraulic traits in two dominant central Amazonian tree species. Journal of Experimental Botany, 2022, 73, 939-952.	4.8	15
3	MODIS Vegetation Continuous Fields tree cover needs calibrating in tropical savannas. Biogeosciences, 2022, 19, 1377-1394.	3.3	7
4	Stomata secretive ways: A commentary on Lamour et al. (2022). Global Change Biology, 2022, 28, 3484-3485.	9.5	0
5	Expanding tropical forest monitoring into Dry Forests: The DRYFLOR protocol for permanent plots. Plants People Planet, 2021, 3, 295-300.	3.3	12
6	Plant traits controlling growth change in response to a drier climate. New Phytologist, 2021, 229, 1363-1374.	7.3	26
7	The response of carbon assimilation and storage to longâ€ŧerm drought in tropical trees is dependent on light availability. Functional Ecology, 2021, 35, 43-53.	3.6	14
8	Pantropical variability in tree crown allometry. Global Ecology and Biogeography, 2021, 30, 459-475.	5.8	27
9	A reporting format for leaf-level gas exchange data and metadata. Ecological Informatics, 2021, 61, 101232.	5.2	22
10	Global climate and nutrient controls of photosynthetic capacity. Communications Biology, 2021, 4, 462.	4.4	23
11	CO ₂ physiological effect can cause rainfall decrease as strong as large-scale deforestation in the Amazon. Biogeosciences, 2021, 18, 2511-2525.	3.3	20
12	Taking the pulse of Earth's tropical forests using networks of highly distributed plots. Biological Conservation, 2021, 260, 108849.	4.1	71
13	LTâ€Brazil: A database of leaf traits across biomes and vegetation types in Brazil. Global Ecology and Biogeography, 2021, 30, 2136-2146.	5.8	8
14	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
15	Small tropical forest trees have a greater capacity to adjust carbon metabolism to longâ€ŧerm drought than large canopy trees. Plant, Cell and Environment, 2020, 43, 2380-2393.	5.7	22
16	Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nature Geoscience, 2019, 12, 736-741.	12.9	177
17	Performance of Laser-Based Electronic Devices for Structural Analysis of Amazonian Terra-Firme Forests. Remote Sensing, 2019, 11, 510.	4.0	7
18	Global photosynthetic capacity is optimized to the environment. Ecology Letters, 2019, 22, 506-517.	6.4	153

2

TOMAS F DOMINGUES

#	Article	IF	CITATIONS
19	Reducing the effects of vegetation phenology on change detection in tropical seasonal biomes. GIScience and Remote Sensing, 2019, 56, 699-717.	5.9	12
20	Leaf-level photosynthetic capacity dynamics in relation to soil and foliar nutrients along forest–savanna boundaries in Ghana and Brazil. Tree Physiology, 2018, 38, 1912-1925.	3.1	23
21	Ecophysiological plasticity of Amazonian trees to long-term drought. Oecologia, 2018, 187, 933-940.	2.0	12
22	Mapping local and global variability in plant trait distributions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10937-E10946.	7.1	159
23	Leafâ€level photosynthetic capacity in lowland Amazonian and highâ€elevation Andean tropical moist forests of Peru. New Phytologist, 2017, 214, 1002-1018.	7.3	89
24	Canopy-scale biophysical controls of transpiration and evaporation in the Amazon Basin. Hydrology and Earth System Sciences, 2016, 20, 4237-4264.	4.9	62
25	Model–data synthesis for the next generation of forest freeâ€air <scp>CO</scp> ₂ enrichment (<scp>FACE</scp>) experiments. New Phytologist, 2016, 209, 17-28.	7.3	178
26	Potential and limitations of inferring ecosystem photosynthetic capacity from leaf functional traits. Ecology and Evolution, 2016, 6, 7352-7366.	1.9	29
27	Fluvial carbon export from a lowland Amazonian rainforest in relation to atmospheric fluxes. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 3001-3018.	3.0	13
28	A test of the â€~oneâ€point method' for estimating maximum carboxylation capacity from fieldâ€measured, lightâ€saturated photosynthesis. New Phytologist, 2016, 210, 1130-1144.	7.3	159
29	Amazon forest response to repeated droughts. Global Biogeochemical Cycles, 2016, 30, 964-982.	4.9	201
30	After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration. Global Change Biology, 2015, 21, 4662-4672.	9.5	67
31	Edaphic, structural and physiological contrasts across Amazon Basin forest–savanna ecotones suggest a role for potassium as a key modulator of tropical woody vegetation structure and function. Biogeosciences, 2015, 12, 6529-6571.	3.3	55
32	Structural, physiognomic and above-ground biomass variation in savanna–forest transition zones on three continents – how different are co-occurring savanna and forest formations?. Biogeosciences, 2015, 12, 2927-2951.	3.3	63
33	The influence of C ₃ and C ₄ vegetation on soil organic matter dynamics in contrasting semi-natural tropical ecosystems. Biogeosciences, 2015, 12, 5041-5059.	3.3	19
34	Clobal variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytologist, 2015, 206, 614-636.	7.3	350
35	Foliar trait contrasts between African forest and savanna trees: genetic versus environmental effects. Functional Plant Biology, 2015, 42, 63.	2.1	23
36	Biome-specific effects of nitrogen and phosphorus on the photosynthetic characteristics of trees at a forest-savanna boundary in Cameroon. Oecologia, 2015, 178, 659-672.	2.0	25

TOMAS F DOMINGUES

#	Article	IF	CITATIONS
37	Contrasting photosynthetic characteristics of forest vs. savanna species (Far North Queensland,) Tj ETQq1 1 0.784	4314 rgBT	/Qverlock
38	The relationship of leaf photosynthetic traits – <i>V</i> _{cmax} and <i>J</i> _{max} – to leaf nitrogen, leaf phosphorus, and specific leaf area: a metaâ€analysis and modeling study. Ecology and Evolution, 2014, 4, 3218-3235.	1.9	338
39	Markedly divergent estimates of <scp>A</scp> mazon forest carbon density from ground plots and satellites. Global Ecology and Biogeography, 2014, 23, 935-946.	5.8	248
40	Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v.1). Geoscientific Model Development, 2014, 7, 1251-1269.	3.6	87
41	Seasonal patterns of leaf-level photosynthetic gas exchange in an eastern Amazonian rain forest. Plant Ecology and Diversity, 2014, 7, 189-203.	2.4	31
42	Basin-wide variations in Amazon forest nitrogen-cycling characteristics as inferred from plant and soil ¹⁵ N: ¹⁴ N measurements. Plant Ecology and Diversity, 2014, 7, 173-187.	2.4	43
43	On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions. Plant Ecology and Diversity, 2013, 6, 101-137.	2.4	105
44	Photosynthetically relevant foliar traits correlating better on a mass vs an area basis: of ecophysiological relevance or just a case of mathematical imperatives and statistical quicksand?. New Phytologist, 2013, 199, 311-321.	7.3	114
45	Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 2012, 9, 3381-3403.	3.3	373
46	Variation in soil carbon stocks and their determinants across a precipitation gradient in <scp>W</scp> est <scp>A</scp> frica. Global Change Biology, 2012, 18, 1670-1683.	9.5	114
47	Variation in soil carbon stocks and their determinants across a precipitation gradient in West Africa. Global Change Biology, 2012, 18, 2676-2676.	9.5	2
48	Height-diameter allometry of tropical forest trees. Biogeosciences, 2011, 8, 1081-1106.	3.3	396
49	Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3316-3329.	4.0	71
50	Coâ€limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant, Cell and Environment, 2010, 33, 959-980.	5.7	192
51	Life form-specific variations in leaf water oxygen-18 enrichment in Amazonian vegetation. Oecologia, 2008, 157, 197-210.	2.0	28
52	The Use of Carbon and Nitrogen Stable Isotopes to Track Effects of Landâ€Use Changes in the Brazilian Amazon Region. Journal of Nano Education (Print), 2007, , 301-318.	0.3	4
53	Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern AmazA´nia, Brazil. Plant Ecology, 2007, 193, 101-112.	1.6	91
54	The Use of Carbon and Nitrogen Stable Isotopes to Track Effects of Land-Use Changes in the Brazilian Amazon Region. , 2007, , 301-318.		0

#	Article	IF	CITATIONS
55	The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry, 2006, 79, 251-274.	3.5	134
56	Parameterization of Canopy Structure and Leaf-Level Gas Exchange for an Eastern Amazonian Tropical Rain Forest (Tapajós National Forest, Pará, Brazil). Earth Interactions, 2005, 9, 1-23.	1.5	110
57	Relative influence of natural watershed properties and human disturbance on stream solute concentrations in the southwestern Brazilian Amazon basin. Water Resources Research, 2002, 38, 25-1-25-16.	4.2	50