
Tomas F Domingues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8549555/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
2	Height-diameter allometry of tropical forest trees. Biogeosciences, 2011, 8, 1081-1106.	3.3	396
3	Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 2012, 9, 3381-3403.	3.3	373
4	Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytologist, 2015, 206, 614-636.	7.3	350
5	The relationship of leaf photosynthetic traits – <i>V</i> _{cmax} and <i>J</i> _{max} – to leaf nitrogen, leaf phosphorus, and specific leaf area: a metaâ€analysis and modeling study. Ecology and Evolution, 2014, 4, 3218-3235.	1.9	338
6	Markedly divergent estimates of <scp>A</scp> mazon forest carbon density from ground plots and satellites. Global Ecology and Biogeography, 2014, 23, 935-946.	5.8	248
7	Amazon forest response to repeated droughts. Global Biogeochemical Cycles, 2016, 30, 964-982.	4.9	201
8	Coâ€limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant, Cell and Environment, 2010, 33, 959-980.	5.7	192
9	Model–data synthesis for the next generation of forest freeâ€air <scp>CO</scp> ₂ enrichment (<scp>FACE</scp>) experiments. New Phytologist, 2016, 209, 17-28.	7.3	178
10	Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nature Geoscience, 2019, 12, 736-741.	12.9	177
11	A test of the â€~oneâ€point method' for estimating maximum carboxylation capacity from fieldâ€measured, lightâ€saturated photosynthesis. New Phytologist, 2016, 210, 1130-1144.	7.3	159
12	Mapping local and global variability in plant trait distributions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10937-E10946.	7.1	159
13	Global photosynthetic capacity is optimized to the environment. Ecology Letters, 2019, 22, 506-517.	6.4	153
14	The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry, 2006, 79, 251-274.	3.5	134
15	Variation in soil carbon stocks and their determinants across a precipitation gradient in <scp>W</scp> est <scp>A</scp> frica. Global Change Biology, 2012, 18, 1670-1683.	9.5	114
16	Photosynthetically relevant foliar traits correlating better on a mass vs an area basis: of ecophysiological relevance or just a case of mathematical imperatives and statistical quicksand?. New Phytologist, 2013, 199, 311-321.	7.3	114
17	Parameterization of Canopy Structure and Leaf-Level Gas Exchange for an Eastern Amazonian Tropical Rain Forest (Tapajós National Forest, Pará, Brazil). Earth Interactions, 2005, 9, 1-23.	1.5	110
18	On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions. Plant Ecology and Diversity, 2013, 6, 101-137.	2.4	105

TOMAS F DOMINGUES

#	Article	IF	CITATIONS
19	Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern AmazÁ´nia, Brazil. Plant Ecology, 2007, 193, 101-112.	1.6	91
20	Leafâ€level photosynthetic capacity in lowland Amazonian and highâ€elevation Andean tropical moist forests of Peru. New Phytologist, 2017, 214, 1002-1018.	7.3	89
21	Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v.1). Geoscientific Model Development, 2014, 7, 1251-1269.	3.6	87
22	Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3316-3329.	4.0	71
23	Taking the pulse of Earth's tropical forests using networks of highly distributed plots. Biological Conservation, 2021, 260, 108849.	4.1	71
24	After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration. Global Change Biology, 2015, 21, 4662-4672.	9.5	67
25	Structural, physiognomic and above-ground biomass variation in savanna–forest transition zones on three continents – how different are co-occurring savanna and forest formations?. Biogeosciences, 2015, 12, 2927-2951.	3.3	63
26	Canopy-scale biophysical controls of transpiration and evaporation in the Amazon Basin. Hydrology and Earth System Sciences, 2016, 20, 4237-4264.	4.9	62
27	Edaphic, structural and physiological contrasts across Amazon Basin forest–savanna ecotones suggest a role for potassium as a key modulator of tropical woody vegetation structure and function. Biogeosciences, 2015, 12, 6529-6571.	3.3	55
28	Relative influence of natural watershed properties and human disturbance on stream solute concentrations in the southwestern Brazilian Amazon basin. Water Resources Research, 2002, 38, 25-1-25-16.	4.2	50
29	Basin-wide variations in Amazon forest nitrogen-cycling characteristics as inferred from plant and soil ¹⁵ N: ¹⁴ N measurements. Plant Ecology and Diversity, 2014, 7, 173-187.	2.4	43
30	Seasonal patterns of leaf-level photosynthetic gas exchange in an eastern Amazonian rain forest. Plant Ecology and Diversity, 2014, 7, 189-203.	2.4	31
31	Potential and limitations of inferring ecosystem photosynthetic capacity from leaf functional traits. Ecology and Evolution, 2016, 6, 7352-7366.	1.9	29
32	Life form-specific variations in leaf water oxygen-18 enrichment in Amazonian vegetation. Oecologia, 2008, 157, 197-210.	2.0	28
33	Pantropical variability in tree crown allometry. Global Ecology and Biogeography, 2021, 30, 459-475.	5.8	27
34	Plant traits controlling growth change in response to a drier climate. New Phytologist, 2021, 229, 1363-1374.	7.3	26
35	Biome-specific effects of nitrogen and phosphorus on the photosynthetic characteristics of trees at a forest-savanna boundary in Cameroon. Oecologia, 2015, 178, 659-672.	2.0	25
36	Foliar trait contrasts between African forest and savanna trees: genetic versus environmental effects. Functional Plant Biology, 2015, 42, 63.	2.1	23

TOMAS F DOMINGUES

#	Article	IF	CITATIONS
37	Leaf-level photosynthetic capacity dynamics in relation to soil and foliar nutrients along forest–savanna boundaries in Ghana and Brazil. Tree Physiology, 2018, 38, 1912-1925.	3.1	23
38	Global climate and nutrient controls of photosynthetic capacity. Communications Biology, 2021, 4, 462.	4.4	23
39	Small tropical forest trees have a greater capacity to adjust carbon metabolism to longâ€ŧerm drought than large canopy trees. Plant, Cell and Environment, 2020, 43, 2380-2393.	5.7	22
40	A reporting format for leaf-level gas exchange data and metadata. Ecological Informatics, 2021, 61, 101232.	5.2	22
41	CO ₂ physiological effect can cause rainfall decrease as strong as large-scale deforestation in the Amazon. Biogeosciences, 2021, 18, 2511-2525.	3.3	20
42	The influence of C ₃ and C ₄ vegetation on soil organic matter dynamics in contrasting semi-natural tropical ecosystems. Biogeosciences, 2015, 12, 5041-5059.	3.3	19
43	Contrasting photosynthetic characteristics of forest vs. savanna species (Far North Queensland,) Tj ETQq1 1 0.78	4314 rg₿ [™] 3.3	「/Qverlock
44	Local hydrological gradients structure high intraspecific variability in plant hydraulic traits in two dominant central Amazonian tree species. Journal of Experimental Botany, 2022, 73, 939-952.	4.8	15
45	The response of carbon assimilation and storage to longâ€ŧerm drought in tropical trees is dependent on light availability. Functional Ecology, 2021, 35, 43-53.	3.6	14
46	Changes in leaf functional traits with leaf age: when do leaves decrease their photosynthetic capacity in Amazonian trees?. Tree Physiology, 2022, 42, 922-938.	3.1	14
47	Fluvial carbon export from a lowland Amazonian rainforest in relation to atmospheric fluxes. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 3001-3018.	3.0	13
48	Ecophysiological plasticity of Amazonian trees to long-term drought. Oecologia, 2018, 187, 933-940.	2.0	12
49	Reducing the effects of vegetation phenology on change detection in tropical seasonal biomes. GIScience and Remote Sensing, 2019, 56, 699-717.	5.9	12
50	Expanding tropical forest monitoring into Dry Forests: The DRYFLOR protocol for permanent plots. Plants People Planet, 2021, 3, 295-300.	3.3	12
51	LTâ€Brazil: A database of leaf traits across biomes and vegetation types in Brazil. Global Ecology and Biogeography, 2021, 30, 2136-2146.	5.8	8
52	Performance of Laser-Based Electronic Devices for Structural Analysis of Amazonian Terra-Firme Forests. Remote Sensing, 2019, 11, 510.	4.0	7
53	MODIS Vegetation Continuous Fields tree cover needs calibrating in tropical savannas. Biogeosciences, 2022, 19, 1377-1394.	3.3	7
54	The Use of Carbon and Nitrogen Stable Isotopes to Track Effects of Landâ€Use Changes in the Brazilian Amazon Region. Journal of Nano Education (Print), 2007, , 301-318.	0.3	4

#	Article	IF	CITATIONS
55	Variation in soil carbon stocks and their determinants across a precipitation gradient in West Africa. Global Change Biology, 2012, 18, 2676-2676.	9.5	2
56	The Use of Carbon and Nitrogen Stable Isotopes to Track Effects of Land-Use Changes in the Brazilian Amazon Region. , 2007, , 301-318.		0
57	Stomata secretive ways: A commentary on Lamour et al. (2022). Global Change Biology, 2022, 28, 3484-3485.	9.5	0