
Matthew R Roesch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8547954/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Minimal cross-trial generalization in learning the representation of an odor-guided choice task. PLoS Computational Biology, 2022, 18, e1009897.	3.2	2
2	Anthraceneâ€Walled Acyclic CB[n] Receptors: <i>inâ€vitro</i> and <i>inâ€vivo</i> Binding Properties toward Drugs of Abuse. ChemMedChem, 2022, 17, .	3.2	2
3	Insula lesions reduce stimulus-driven control of behavior during odor-guided decision-making and autoshaping. Brain Research, 2022, 1785, 147885.	2.2	2
4	Medial prefrontal cortex lesions disrupt prepotent action selection signals in dorsomedial striatum. Current Biology, 2022, 32, 3276-3287.e3.	3.9	4
5	Enduring consequences of perinatal fentanyl exposure in mice. Addiction Biology, 2021, 26, e12895.	2.6	31
6	Anterior cingulate cortex and adaptive control of brain and behavior. International Review of Neurobiology, 2021, 158, 283-309.	2.0	14
7	In Vitro and In Vivo Sequestration of Phencyclidine by Me ₄ Cucurbit[8]uril**. Chemistry - A European Journal, 2021, 27, 3098-3105.	3.3	14
8	Prior Cocaine Exposure Increases Firing to Immediate Reward While Attenuating Cue and Context Signals Related to Reward Value in the Insula. Journal of Neuroscience, 2021, 41, 4667-4677.	3.6	8
9	The ever-changing OFC landscape: What neural signals in OFC can tell us about inhibitory control Behavioral Neuroscience, 2021, 135, 129-137.	1.2	6
10	Prediction errors and valence: From single units to multidimensional encoding in the amygdala. Behavioural Brain Research, 2021, 404, 113176.	2.2	8
11	Reactive and Proactive Adaptation of Cognitive and Motor Neural Signals during Performance of a Stop-Change Task. Brain Sciences, 2021, 11, 617.	2.3	4
12	Rats delay gratification during a time-based diminishing returns task Journal of Experimental Psychology Animal Learning and Cognition, 2021, 47, 420-428.	0.5	3
13	In Vitro and In Vivo Sequestration of Methamphetamine by a Sulfated Acyclic CB[n]â€Type Receptor. Chemistry - A European Journal, 2021, 27, 17476-17486.	3.3	5
14	Overexpressing Histone Deacetylase 5 in Rat Dorsal Striatum Alters Reward-Guided Decision-Making and Associated Neural Encoding. Journal of Neuroscience, 2021, 41, 10080-10090.	3.6	2
15	Prior cocaine self-administration impairs attention signals in anterior cingulate cortex. Neuropsychopharmacology, 2020, 45, 833-841.	5.4	12
16	Anterior Cingulate Cortex Signals Attention in a Social Paradigm that Manipulates Reward and Shock. Current Biology, 2020, 30, 3724-3735.e2.	3.9	30
17	Neural Signals in Red Nucleus during Reactive and Proactive Adjustments in Behavior. Journal of Neuroscience, 2020, 40, 4715-4726.	3.6	10
18	Anterior cingulate cortex is necessary for adaptation of action plans. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6196-6204.	7.1	66

#	Article	IF	CITATIONS
19	Impacts of inter-trial interval duration on a computational model of sign-tracking vs. goal-tracking behaviour. Psychopharmacology, 2019, 236, 2373-2388.	3.1	6
20	Dopamine signals related to appetitive and aversive events in paradigms that manipulate reward and avoidability. Brain Research, 2019, 1713, 80-90.	2.2	23
21	Single Neurons in Anterior Cingulate Cortex Signal the Need to Change Action During Performance of a Stop-change Task that Induces Response Competition. Cerebral Cortex, 2019, 29, 1020-1031.	2.9	28
22	A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task. ELife, 2019, 8, .	6.0	479
23	Neural Activity in Ventral Medial Prefrontal Cortex Is Modulated More Before Approach Than Avoidance During Reinforced and Extinction Trial Blocks. Journal of Neuroscience, 2018, 38, 4584-4597.	3.6	11
24	Previous cocaine self-administration disrupts reward expectancy encoding in ventral striatum. Neuropsychopharmacology, 2018, 43, 2350-2360.	5.4	20
25	Manipulating the revision of reward value during the intertrial interval increases sign tracking and dopamine release. PLoS Biology, 2018, 16, e2004015.	5.6	24
26	The impact of drugs of abuse on executive function: characterizing long-term changes in neural correlates following chronic drug exposure and withdrawal in rats. Learning and Memory, 2018, 25, 461-473.	1.3	15
27	Firing of Putative Dopamine Neurons in Ventral Tegmental Area Is Modulated by Probability of Success during Performance of a Stop-Change Task. ENeuro, 2018, 5, ENEURO.0007-18.2018.	1.9	8
28	Rat behavior and dopamine release are modulated by conspecific distress. ELife, 2018, 7, .	6.0	15
29	Effects of inference on dopaminergic prediction errors depend on orbitofrontal processing Behavioral Neuroscience, 2017, 131, 127-134.	1.2	21
30	Prior Cocaine Self-Administration Increases Response–Outcome Encoding That Is Divorced from Actions Selected in Dorsal Lateral Striatum. Journal of Neuroscience, 2017, 37, 7737-7747.	3.6	15
31	Phasic dopamine release in the rat nucleus accumbens predicts approach and avoidance performance. Nature Communications, 2016, 7, 13154.	12.8	33
32	Prenatal Nicotine Exposure Impairs Executive Control Signals in Medial Prefrontal Cortex. Neuropsychopharmacology, 2016, 41, 716-725.	5.4	32
33	Rule encoding in dorsal striatum impacts action selection. European Journal of Neuroscience, 2015, 42, 2555-2567.	2.6	19
34	Neural correlates of rules and conflict in medial prefrontal cortex during decision and feedback epochs. Frontiers in Behavioral Neuroscience, 2015, 9, 266.	2.0	37
35	Interneurons Are Necessary for Coordinated Activity During Reversal Learning in Orbitofrontal Cortex. Biological Psychiatry, 2015, 77, 454-464.	1.3	63
36	Altered Basolateral Amygdala Encoding in an Animal Model of Schizophrenia. Journal of Neuroscience, 2015, 35, 6394-6400.	3.6	9

#	Article	IF	CITATIONS
37	Executive Control Signals in Orbitofrontal Cortex during Response Inhibition. Journal of Neuroscience, 2015, 35, 3903-3914.	3.6	70
38	Neurophysiology of Reward-Guided Behavior: Correlates Related to Predictions, Value, Motivation, Errors, Attention, and Action. Current Topics in Behavioral Neurosciences, 2015, 27, 199-230.	1.7	43
39	From ventral-medial to dorsal-lateral striatum: Neural correlates of reward-guided decision-making. Neurobiology of Learning and Memory, 2015, 117, 51-59.	1.9	177
40	Impact of appetitive and aversive outcomes on brain responses: linking the animal and human literatures. Frontiers in Systems Neuroscience, 2014, 8, 24.	2.5	41
41	Increased Firing to Cues That Predict Low-Value Reward in the Medial Orbitofrontal Cortex. Cerebral Cortex, 2014, 24, 3310-3321.	2.9	36
42	Observation of Reward Delivery to a Conspecific Modulates Dopamine Release in Ventral Striatum. Current Biology, 2014, 24, 2564-2568.	3.9	40
43	Ventral Striatum Lesions Enhance Stimulus and Response Encoding in Dorsal Striatum. Biological Psychiatry, 2014, 75, 132-139.	1.3	30
44	You won't regret reading this. Nature Neuroscience, 2014, 17, 892-893.	14.8	2
45	Neural structures underlying set-shifting: Roles of medial prefrontal cortex and anterior cingulate cortex. Behavioural Brain Research, 2013, 250, 91-101.	2.2	134
46	Separate Populations of Neurons in Ventral Striatum Encode Value and Motivation. PLoS ONE, 2013, 8, e64673.	2.5	29
47	Normal Aging Alters Learning and Attention-Related Teaching Signals in Basolateral Amygdala. Journal of Neuroscience, 2012, 32, 13137-13144.	3.6	18
48	Willingness to Wait and Altered Encoding of Time-Discounted Reward in the Orbitofrontal Cortex with Normal Aging. Journal of Neuroscience, 2012, 32, 5525-5533.	3.6	31
49	Reward Prediction Error Signaling in Posterior Dorsomedial Striatum Is Action Specific. Journal of Neuroscience, 2012, 32, 10296-10305.	3.6	55
50	Attention-Related Pearce-Kaye-Hall Signals in Basolateral Amygdala Require the Midbrain Dopaminergic System. Biological Psychiatry, 2012, 72, 1012-1019.	1.3	45
51	Response inhibition signals and miscoding of direction in dorsomedial striatum. Frontiers in Integrative Neuroscience, 2012, 6, 69.	2.1	32
52	Basolateral amygdala encodes upcoming errors but not response conflict. European Journal of Neuroscience, 2012, 35, 952-959.	2.6	10
53	Surprise! Neural correlates of Pearce–Hall and Rescorla–Wagner coexist within the brain. European Journal of Neuroscience, 2012, 35, 1190-1200.	2.6	157
54	Expectancy-related changes in firing of dopamine neurons depend on orbitofrontal cortex. Nature Neuroscience, 2011, 14, 1590-1597.	14.8	224

#	Article	IF	CITATIONS
55	Impact of Size and Delay on Neural Activity in the Rat Limbic Corticostriatal System. Frontiers in Neuroscience, 2011, 5, 130.	2.8	28
56	Impact of expected value on neural activity in rat substantia nigra pars reticulata. European Journal of Neuroscience, 2011, 33, 2308-2317.	2.6	29
57	Attention for Learning Signals in Anterior Cingulate Cortex. Journal of Neuroscience, 2011, 31, 18266-18274.	3.6	124
58	Neural correlates of stimulus-response and response-outcome associations in dorsolateral versus dorsomedial striatum. Frontiers in Integrative Neuroscience, 2010, 4, 12.	2.1	96
59	All That Glitters … Dissociating Attention and Outcome Expectancy From Prediction Errors Signals. Journal of Neurophysiology, 2010, 104, 587-595.	1.8	61
60	Neural Correlates of Variations in Event Processing during Learning in Basolateral Amygdala. Journal of Neuroscience, 2010, 30, 2464-2471.	3.6	147
61	More Is Less: A Disinhibited Prefrontal Cortex Impairs Cognitive Flexibility. Journal of Neuroscience, 2010, 30, 17102-17110.	3.6	157
62	Neural Correlates of Variations in Event Processing during Learning in Central Nucleus of Amygdala. Neuron, 2010, 68, 991-1001.	8.1	64
63	Ventral Striatal Neurons Encode the Value of the Chosen Action in Rats Deciding between Differently Delayed or Sized Rewards. Journal of Neuroscience, 2009, 29, 13365-13376.	3.6	176
64	A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nature Reviews Neuroscience, 2009, 10, 885-892.	10.2	501
65	The Orbitofrontal Cortex and Ventral Tegmental Area Are Necessary for Learning from Unexpected Outcomes. Neuron, 2009, 62, 269-280.	8.1	252
66	Neural substrates of cognitive inflexibility after chronic cocaine exposure. Neuropharmacology, 2009, 56, 63-72.	4.1	135
67	Previous Cocaine Exposure Makes Rats Hypersensitive to Both Delay and Reward Magnitude. Journal of Neuroscience, 2007, 27, 245-250.	3.6	134
68	Cocaine exposure shifts the balance of associative encoding from ventral to dorsolateral striatum. Frontiers in Integrative Neuroscience, 2007, 1, 11.	2.1	58
69	Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards. Nature Neuroscience, 2007, 10, 1615-1624.	14.8	538
70	Should I Stay or Should I Go?: Transformation of Time-Discounted Rewards in Orbitofrontal Cortex and Associated Brain Circuits. Annals of the New York Academy of Sciences, 2007, 1104, 21-34.	3.8	43
71	Neuronal Activity Related to Anticipated Reward in Frontal Cortex. Annals of the New York Academy of Sciences, 2007, 1121, 431-446.	3.8	79
72	Neural Correlates of Inflexible Behavior in the Orbitofrontal–Amygdalar Circuit after Cocaine Exposure. Annals of the New York Academy of Sciences, 2007, 1121, 598-609.	3.8	29

#	Article	IF	CITATIONS
73	Cocaine exposure shifts the balance of associative encoding from ventral to dorsolateral striatum. Frontiers in Integrative Neuroscience, 2007, 1, .	2.1	24
74	Encoding of Time-Discounted Rewards in Orbitofrontal Cortex Is Independent of Value Representation. Neuron, 2006, 51, 509-520.	8.1	280
75	Abnormal associative encoding in orbitofrontal neurons in cocaine-experienced rats during decision-making. European Journal of Neuroscience, 2006, 24, 2643-2653.	2.6	79
76	Associative Encoding in Anterior Piriform Cortex versus Orbitofrontal Cortex during Odor Discrimination and Reversal Learning. Cerebral Cortex, 2006, 17, 643-652.	2.9	111
77	Neuronal Activity Related to Reward Value and Motivation in Primate Frontal Cortex. Science, 2004, 304, 307-310.	12.6	483