
Scott E Counts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8546672/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cholinergic system during the progression of Alzheimer's disease: therapeutic implications. Expert Review of Neurotherapeutics, 2008, 8, 1703-1718.	2.8	493
2	Enhancing mitochondrial proteostasis reduces amyloid-l² proteotoxicity. Nature, 2017, 552, 187-193.	27.8	471
3	Down regulation of trk but not p75 ^{NTR} gene expression in single cholinergic basal forebrain neurons mark the progression of Alzheimer's disease. Journal of Neurochemistry, 2006, 97, 475-487.	3.9	229
4	Microarray Analysis of Hippocampal CA1 Neurons Implicates Early Endosomal Dysfunction During Alzheimer's Disease Progression. Biological Psychiatry, 2010, 68, 885-893.	1.3	229
5	The Role of Nerve Growth Factor Receptors in Cholinergic Basal Forebrain Degeneration in Prodromal Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2005, 64, 263-272.	1.7	210
6	Locus coeruleus cellular and molecular pathology during the progression of Alzheimer's disease. Acta Neuropathologica Communications, 2017, 5, 8.	5.2	197
7	Mild cognitive impairment: pathology and mechanisms. Acta Neuropathologica, 2012, 123, 13-30.	7.7	189
8	Differential Expression of Synaptic Proteins in the Frontal and Temporal Cortex of Elderly Subjects With Mild Cognitive Impairment. Journal of Neuropathology and Experimental Neurology, 2006, 65, 592-601.	1.7	183
9	Reduction of cortical TrkA but not p75 ^{NTR} protein in earlyâ€stage Alzheimer's disease. Annals of Neurology, 2004, 56, 520-531.	5.3	181
10	Light and Electron Microscopic Localization of Presenilin-1 in Primate Brain. Journal of Neuroscience, 1997, 17, 1971-1980.	3.6	158
11	Gene expression profiles of cholinergic nucleus basalis neurons in Alzheimer's disease. Neurochemical Research, 2002, 27, 1035-1048.	3.3	141
12	Noradrenaline activation of neurotrophic pathways protects against neuronal amyloid toxicity. Journal of Neurochemistry, 2010, 113, 649-660.	3.9	130
13	Biomarkers for the Early Detection and Progression of Alzheimer's Disease. Neurotherapeutics, 2017, 14, 35-53.	4.4	128
14	Regional Selectivity of rab5 and rab7 Protein Upregulation in Mild Cognitive Impairment and Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 22, 631-639.	2.6	110
15	Synaptic gene dysregulation within hippocampal CA1 pyramidal neurons in mild cognitive impairment. Neuropharmacology, 2014, 79, 172-179.	4.1	109
16	Upregulation of select rab GTPases in cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer's disease. Journal of Chemical Neuroanatomy, 2011, 42, 102-110.	2.1	107
17	α7 Nicotinic Receptor Up-regulation in Cholinergic Basal Forebrain Neurons in Alzheimer Disease. Archives of Neurology, 2007, 64, 1771.	4.5	103
18	Molecular and cellular pathophysiology of preclinical Alzheimer's disease. Behavioural Brain Research, 2016, 311, 54-69.	2.2	99

#	Article	IF	CITATIONS
19	Shift in the ratio of three-repeat tau and four-repeat tau mRNAs in individual cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer's disease. Journal of Neurochemistry, 2006, 96, 1401-1408.	3.9	93
20	Cholinotrophic Molecular Substrates of Mild Cognitive Impairment in the Elderly. Current Alzheimer Research, 2007, 4, 340-350.	1.4	91
21	Evidence for Mitochondrial UPR Gene Activation in Familial and Sporadic Alzheimer's Disease. Current Alzheimer Research, 2016, 13, 610-614.	1.4	91
22	Hippocampal ProNGF Signaling Pathways and Î ² -Amyloid Levels in Mild Cognitive Impairment and Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2012, 71, 1018-1029.	1.7	89
23	Single-Cell Gene Expression Analysis: Implications for Neurodegenerative and Neuropsychiatric Disorders. Neurochemical Research, 2004, 29, 1053-1064.	3.3	84
24	DHA diet reduces AD pathology in young APPswe/PS1ΔE9 transgenic mice: Possible gender effects. Journal of Neuroscience Research, 2010, 88, 1026-1040.	2.9	81
25	Hippocampal Drebrin Loss in Mild Cognitive Impairment. Neurodegenerative Diseases, 2012, 10, 216-219.	1.4	75
26	Single cell gene expression profiling in Alzheimer's disease. NeuroRx, 2006, 3, 302-318.	6.0	71
27	Alzheimer's Disease in the Latino Community: Intersection of Genetics and Social Determinants of Health. Journal of Alzheimer's Disease, 2017, 58, 979-992.	2.6	70
28	Preservation of Brain Nerve Growth Factor in Mild Cognitive Impairment and Alzheimer Disease. Archives of Neurology, 2003, 60, 1143.	4.5	65
29	Evidence for a neuroprotective microRNA pathway in amnestic mild cognitive impairment. Frontiers in Neuroscience, 2015, 9, 430.	2.8	64
30	MicroRNA-298 reduces levels of human amyloid-β precursor protein (APP), β-site APP-converting enzyme 1 (BACE1) and specific tau protein moieties. Molecular Psychiatry, 2021, 26, 5636-5657.	7.9	61
31	Nerve Growth Factor Pathobiology During the Progression of Alzheimer's Disease. Frontiers in Neuroscience, 2019, 13, 533.	2.8	60
32	Cortical α7 Nicotinic Acetylcholine Receptor and β-Amyloid Levels in Early Alzheimer Disease. Archives of Neurology, 2009, 66, 646-51.	4.5	59
33	Peri-Infarct Upregulation of the Oxytocin Receptor in Vascular Dementia. Journal of Neuropathology and Experimental Neurology, 2019, 78, 436-452.	1.7	56
34	Galanin in Alzheimer Disease. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2003, 3, 137-156.	3.4	56
35	Galanin Fiber Hyperinnervation Preserves Neuroprotective Gene Expression in Cholinergic Basal Forebrain Neurons in Alzheimer's Disease. Journal of Alzheimer's Disease, 2009, 18, 885-896.	2.6	53
36	Galanin: Neurobiologic Mechanisms and Therapeutic Potential for Alzheimer's Disease. CNS Neuroscience & Therapeutics, 2001, 7, 445-470.	4.0	45

#	Article	IF	CITATIONS
37	Selective decline of neurotrophin and neurotrophin receptor genes within CA1 pyramidal neurons and hippocampus proper: Correlation with cognitive performance and neuropathology in mild cognitive impairment and Alzheimer's disease. Hippocampus, 2019, 29, 422-439.	1.9	45
38	Neuronal gene expression profiling: uncovering the molecular biology of neurodegenerative disease. Progress in Brain Research, 2006, 158, 197-222.	1.4	42
39	Regulator of Cell Cycle (RGCC) Expression during the Progression of Alzheimer's Disease. Cell Transplantation, 2017, 26, 693-702.	2.5	41
40	Galanin Fiber Hypertrophy within the Cholinergic Nucleus Basalis during the Progression of Alzheimer's Disease. Dementia and Geriatric Cognitive Disorders, 2006, 21, 205-214.	1.5	40
41	Preservation of cortical sortilin protein levels in MCI and Alzheimer's disease. Neuroscience Letters, 2010, 471, 129-133.	2.1	40
42	Pretangle pathology within cholinergic nucleus basalis neurons coincides with neurotrophic and neurotransmitter receptor gene dysregulation during the progression of Alzheimer's disease. Neurobiology of Disease, 2018, 117, 125-136.	4.4	37
43	Neuroprotective Role for Galanin in Alzheimer's Disease. Exs, 2010, 102, 143-162.	1.4	37
44	Cerebrospinal Fluid proNGF: A Putative Biomarker for Early Alzheimer's Disease. Current Alzheimer Research, 2016, 13, 800-808.	1.4	35
45	Galanin plasticity in the cholinergic basal forebrain in Alzheimer's disease and transgenic mice. Neuropeptides, 2005, 39, 233-237.	2.2	33
46	Galanin Hyperinnervation Upregulates Choline Acetyltransferase Expression in Cholinergic Basal Forebrain Neurons in Alzheimer's Disease. Neurodegenerative Diseases, 2008, 5, 228-231.	1.4	33
47	Galanin inhibits tyrosine hydroxylase expression in midbrain dopaminergic neurons. Journal of Neurochemistry, 2002, 83, 442-451.	3.9	32
48	Brain-derived neurotrophic factor (BDNF) and TrkB hippocampal gene expression are putative predictors of neuritic plaque and neurofibrillary tangle pathology. Neurobiology of Disease, 2019, 132, 104540.	4.4	32
49	Gender differences in neurotrophin and glutamate receptor expression in cholinergic nucleus basalis neurons during the progression of Alzheimer's disease. Journal of Chemical Neuroanatomy, 2011, 42, 111-117.	2.1	31
50	Tau Oligomer Pathology in Nucleus Basalis Neurons During the Progression of Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2018, 77, 246-259.	1.7	31
51	Rac1b Increases with Progressive Tau Pathology within Cholinergic Nucleus Basalis Neurons in Alzheimer's Disease. American Journal of Pathology, 2012, 180, 526-540.	3.8	30
52	Locus Coeruleus. , 2012, , 425-438.		28
53	Pseudophosphorylation of tau at S422 enhances SDS-stable dimer formation and impairs both anterograde and retrograde fast axonal transport. Experimental Neurology, 2016, 283, 318-329.	4.1	28
54	Locus Coeruleus Degeneration Induces Forebrain Vascular Pathology in a Transgenic Rat Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2019, 70, 371-388.	2.6	26

#	Article	IF	CITATIONS
55	Human microRNA (miR-20b-5p) modulates Alzheimer's disease pathways and neuronal function, and a specific polymorphism close to the MIR20B gene influences Alzheimer's biomarkers. Molecular Psychiatry, 2022, 27, 1256-1273.	7.9	26
56	Protein homeostasis gene dysregulation in pretangle-bearing nucleus basalis neurons during the progression of Alzheimer's disease. Neurobiology of Aging, 2016, 42, 80-90.	3.1	25
57	Nurse Work Environment and Stress Biomarkers. Journal of Occupational and Environmental Medicine, 2019, 61, 676-681.	1.7	24
58	Coordinate Expression of the Vesicular Acetylcholine Transporter and Choline Acetyltransferase Following Septohippocampal Pathway Lesions. Journal of Neurochemistry, 1998, 71, 2411-2420.	3.9	22
59	Intravenous Immunoglobulin (IVIG) Treatment Exerts Antioxidant and Neuropreservatory Effects in Preclinical Models of Alzheimer's Disease. Journal of Clinical Immunology, 2014, 34, 80-85.	3.8	21
60	Oxytocin Receptor Signaling in Vascular Function and Stroke. Frontiers in Neuroscience, 2020, 14, 574499.	2.8	17
61	Dimebon alters hippocampal amyloid pathology in 3xTg-AD mice. International Journal of Physiology, Pathophysiology and Pharmacology, 2012, 4, 115-27.	0.8	17
62	Editorial (Thematic Issue: Overview of Immunotherapy in Alzheimer's Disease (AD) and Mechanisms of) Tj E	TQq0 0 0 r 1.4	gBT /Overlock
63	Multi-Infarct Dementia: A Historical Perspective. Dementia and Geriatric Cognitive Disorders Extra, 2017, 7, 160-171.	1.3	14
64	Intravenous Immunoglobulin Reduces Tau Pathology and Preserves Neuroplastic Gene Expression in the 3xTg Mouse Model of Alzheimer's Disease. Current Alzheimer Research, 2014, 11, 655-663.	1.4	14
65	Effects of ex vivo transduction of mesencephalic reaggregates with bcl-2 on grafted dopamine neuron survival. Brain Research, 2007, 1134, 33-44.	2.2	12
66	Putative CSF protein biomarker candidates for amnestic mild cognitive impairment. Translational Neuroscience, 2010, 1, 2-8.	1.4	12
67	The regulation of presenilin-1 by nerve growth factor. Journal of Neurochemistry, 2008, 76, 679-689.	3.9	11
68	Posterior cingulate cortex reveals an expression profile of resilience in cognitively intact elders. Brain Communications, 2022, 4, .	3.3	10
69	Ezrin Expression is Increased During Disease Progression in a Tauopathy Mouse Model and Alzheimer's Disease. Current Alzheimer Research, 2018, 15, 1086-1095.	1.4	8
70	Dysfunctional neuroplasticity in newly arrived Middle Eastern refugees in the U.S.: Association with environmental exposures and mental health symptoms. PLoS ONE, 2020, 15, e0230030.	2.5	8
71	Pontine Arteriolosclerosis and Locus Coeruleus Oxidative Stress Differentiate Resilience from Mild Cognitive Impairment in a Clinical Pathologic Cohort. Journal of Neuropathology and Experimental Neurology, 2021, 80, 325-335.	1.7	7
72	Anti-fibrillization effects of sulfonamide derivatives on α-synuclein and hyperphosphorylated tau	3.6	6

Anti-fibrillization effects of sulfonamide derivatives on α-synuclein and hyperphosphorylated tau isoform 1N4R. Journal of Molecular Structure, 2022, 1267, 133574. 3.6 72

#	Article	IF	CITATIONS
73	Co-expression network analysis of frontal cortex during the progression of Alzheimer's disease. Cerebral Cortex, 2022, 32, 5108-5120.	2.9	4
74	RNA amplification of bromodeoxyuridine labeled newborn neurons in the monkey hippocampus. Journal of Neuroscience Methods, 2005, 144, 197-201.	2.5	2
75	[P2–179]: MITOCHONDRIAL UNFOLDED PROTEIN RESPONSE (MTUPR) DYSFUNCTION DURING THE PROGRESSION OF ALZHEIMER's DISEASE. Alzheimer's and Dementia, 2017, 13, P674.	0.8	2
76	Therapeutic potential of oxytocin receptor signaling in vascular dementia. Alzheimer's and Dementia, 2020, 16, e045493.	0.8	1
77	Response to Letter to the Editor "Biomarkers Determination of the Nurse in Various Work Environments― Journal of Occupational and Environmental Medicine, 2019, 61, e535.	1.7	0
78	Single cell gene expression profiling in Alzheimer's disease. Neurotherapeutics, 2006, 3, 302-318.	4.4	0
79	Title is missing!. , 2020, 15, e0230030.		0
80	Title is missing!. , 2020, 15, e0230030.		0
81	Title is missing!. , 2020, 15, e0230030.		0
82	Title is missing!. , 2020, 15, e0230030.		0
83	Alteration of a specific microRNA regulating neprilysin expression in Alzheimer's disease Alzheimer's and Dementia, 2021, 17 Suppl 3, e054693.	0.8	0
84	Sex differences in the therapeutic efficacy of oxytocin receptor signaling in a rat model of vascular cognitive impairment Alzheimer's and Dementia, 2021, 17 Suppl 3, e055561.	0.8	0