Tadahiro Wada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/854451/publications.pdf

Version: 2024-02-01

			1684188	1	720034
5	59	103	5		7
pa	pers	citations	h-index		g-index
	61	61	61		39
all	docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Tool wear of AlCrW-based-coatings on cemented carbide tools prepared by arc ion plating in dry cutting of alloy steel AISI 5120H. Materials Today: Proceedings, 2021, , .	1.8	O
2	Tool Wear of WC-Co-Based Cemented Carbide in External Thread Turning of Super Heat-resistant Alloy Inconel 718 with High-Pressure Coolant Supply. , 2021, , .		1
3	Chip Breakability in Turning of 7075 Aluminium Alloy with a High-Pressure Coolant Supply. Journal of Physics: Conference Series, 2020, 1510, 012009.	0.4	O
4	Cutting Performance in Threading Turning and Grooving Turning of Ti-6Al-4V Alloy with a High-Pressure Coolant Supply. , 2019, , .		1
5	Wear Mechanism of Multilayer AlCrWN/AlCrWSiN-coatings on Cemented Carbide Tools Prepared by Arc Ion Plating in Dry Cutting of Hardened Sintered Steel. MATEC Web of Conferences, 2019, 303, 06003.	0.2	O
6	Tool Wear in Intermittent Cutting of AISI 304 Stainless Steel by Thermally-Sprayed Coatings. Key Engineering Materials, 2019, 821, 287-293.	0.4	0
7	Tool wear of (Ti, Al) N-coated polycrystalline cubic boron nitride compact in cutting of hardened steel. IOP Conference Series: Materials Science and Engineering, 2017, 264, 012017.	0.6	4
8	Tool wear of poly crystalline diamond in cutting Ti-6Al-4V alloy with high-pressure coolant supplied. , 2017, , .		4
9	Study on ductile-brittle transition of single crystal silicon by a scratching test using a single diamond tool., 2017,,.		3
10	Tool Wear of Aluminum/Chromium/Tungsten/Silicon-Based-Coated End Mill Cutters in Milling Hardened Steel. Solid State Phenomena, 2017, 263, 85-89.	0.3	0
11	Tool Wear of Multi-Layer AlCrWN/AlCrWSiN-Coated Cemented Carbide in Cutting Hardened Sintered Steel. Solid State Phenomena, 2017, 266, 69-75.	0.3	1
12	Tool wear of aluminum/chromium/tungsten/silicon-based-coated solid carbide thread milling cutters in thread tapping of chromium-molybdenum steel. , $2016, , .$		1
13	Tool Wear of Aluminum / Chromium / Tungsten/ Silicon-Based-Coated Cemented Carbide Tools in Cutting of Hardened Steel. International Journal of Engineering and Technology, 2016, 8, 406-409.	0.2	3
14	Tool Wear of Sintered Cubic Boron Nitride Compact in Cutting High-Nickel Alloy with High-Pressure Coolant Supplied. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2015, 63, 157-165.	0.2	1
15	Tool Wear of Aluminum/Chromium/Tungsten-Based-Coated Cemented Carbide in Cutting Hardened Steel. Applied Mechanics and Materials, 2015, 798, 377-383.	0.2	6
16	Tool Wear of Titanium/Tungsten/Silicon/Aluminum- Based-Coated Solid Carbide Thread Milling Cutters in Thread Tapping of Chromium-Molybdenum Steel. International Journal of Engineering and Technology, 2015, 7, 445-448.	0.2	3
17	Temperatures of maximum density in a pressure range from 15 MPa to Ⱂ15 MPa generated for water in a metal Berthelot tube. Physics and Chemistry of Liquids, 2014, 52, 37-45.	1.2	3
18	Tool Wear of Aluminum-Chromium Based Coated Cemented Carbide in Cutting Hardened Sintered Steel. International Journal of Engineering and Technology, 2014, 6, 223-226.	0.2	5

#	Article	IF	CITATIONS
19	Surface Modification of 6061 Aluminum Alloy Using Plasma-Based Ion Implantation and Deposition. Advanced Science Letters, 2013, 19, 2317-2321.	0.2	O
20	Tool Wear of Diamond-Like Carbon-Coated High-Speed Steel with a Cr-Based Interlayer in Cutting of Aluminum Alloys. Applied Mechanics and Materials, 2012, 152-154, 74-79.	0.2	1
21	Tool Wear of Polycrystalline Cubic Boron Nitride Compact Tools in Cutting Hardened Steel. Advanced Materials Research, 2012, 488-489, 724-728.	0.3	2
22	Tool Wear of (Al, Cr)N Coated Cemented Carbide in Cutting Sintered Steel. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2011, 58, 459-462.	0.2	6
23	Tool Failure of Surface-treated High Speed Steel Tap. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2011, 58, 275-278.	0.2	0
24	Properties of TaN Coating Film Deposited on WC-Co-Based Cemented Carbide Using Magnetron Sputter Ion Plating. Applied Mechanics and Materials, 2011, 87, 186-190.	0.2	0
25	Cutting Performance of Diamond-Like Carbon Coated Tool in Cutting of Aluminum Alloys. Materials Science Forum, 2010, 638-642, 368-373.	0.3	7
26	Cutting Performance of a Turning Insert Having an Arc-shaped Finishing Edge. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2009, 56, 668-671.	0.2	0
27	Tool Wear of (Ti, W, Si)N Coated Cemented Carbide in Cutting Hardened Steel. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2009, 56, 672-676.	0.2	1
28	Tool Wear of Polycrystalline Cubic Boron Nitride Compact in Cutting Hardened Steel. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2008, 55, 623-628.	0.2	2
29	Tool Wear of (Ti,W,Si)N Coated Cemented Carbides in Cutting Sintered Steels. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2008, 55, 823-826.	0.2	1
30	Performance of Titanium-Tungsten-Silicon-Aluminum Based Coated Cutting Tools. Materials Science Forum, 2007, 561-565, 1241-1244.	0.3	1
31	Tool Wear of Polycrystalline Diamond Compacts in Cutting of a Cemented Carbide. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2007, 54, 311-316.	0.2	0
32	Tool Wear of (Ti, W, Si) N Coated Cemented Carbide. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2007, 54, 405-409.	0.2	5
33	Tool Wear of Titanium-Tungsten Based Coated Cemented Carbides. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2006, 53, 938-942.	0.2	1
34	High Negative Pressures in Acetone Measured by the Berthelot Method Using Strain Gauge Pressure Transducer. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2006, 16, 374-378.	0.0	0
35	Surface Modification of Aluminium Alloys. Materials Science Forum, 2006, 519-521, 765-770.	0.3	6
36	Tool Wear of Cemented Carbide in Cutting of Inconel 718. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2005, 52, 399-403.	0.2	1

#	Article	IF	Citations
37	Tool Wear of (Ti,W)N Coated Cemented Carbide. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2005, 52, 228-232.	0.2	6
38	Machinability of Aluminum Alloys. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2004, 51, 199-205.	0.2	2
39	Tool Wear in Culling of Forged Sintered Material. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2004, 51, 330-335.	0.2	0
40	Tool Wear of (Ti,B)N Coated Carbides. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2003, 50, 674-679.	0.2	4
41	Machinability of Hardened Sintered Steel. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2003, 50, 527-533.	0.2	1
42	Cutting Performance of (Ti,V)N Coated Cemented Carbide Tools. Tool Wear in Cutting of Stainless Steel Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2002, 49, 984-988.	0.2	5
43	Cutting Performance of CBN Tools in Cutting of Sintered Steel Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2002, 49, 773-779.	0.2	0
44	Tool Wear in Cutting of Sintered Iron Material Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2001, 48, 386-391.	0.2	3
45	Tool Wear in Cutting of Sintered Stainless Steel Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2001, 48, 790-795.	0.2	0
46	Study on Chip Breaker. Performance of A New Chip Breaker in Wet Turning Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1999, 46, 465-471.	0.2	0
47	Tool Wear in High Speed Turning of SCr420 Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1999, 46, 935-941.	0.2	0
48	Tool Wear in Cutting of ADI Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 1998, 64, 4065-4071.	0.2	3
49	Vibratory Cut-Off Grinding Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 1998, 64, 2267-2272.	0.2	0
50	Study on Chip Breaker Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1998, 45, 147-152.	0.2	0
51	Tool Wear in High Speed Turning of Nodular Cast Iron Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1997, 44, 1151-1156.	0.2	2
52	Study on chip breaker. Performance of a new chip breaker in dry turning Journal of the Japan Society for Precision Engineering, 1988, 54, 1975-1980.	0.1	0
53	Study on chip breaker. Chip breaking mechanism of a chip breaker applicable to wide range of feed rate and depth of cut Journal of the Japan Society for Precision Engineering, 1986, 52, 858-863.	0.1	0
54	Study of chip breaker. Development of new chip breaker suitable for wide cutting conditions Journal of the Japan Society for Precision Engineering, 1986, 52, 1211-1217.	0.1	0

TADAHIRO WADA

#	Article	IF	CITATIONS
55	Cutting Performance of Turning Insert with Three-Arcs-Shaped Finishing Edge. Applied Mechanics and Materials, 0, 110-116, 1630-1636.	0.2	1
56	Phase Diagram of Thermotropic Liquid Crystal Including Negative Pressure Region Generated in Metal Berthelot Tube. Solid State Phenomena, 0, 181-182, 22-25.	0.3	0
57	Surface Modification of Aluminum Alloy Using Plasma Based Ion Implantation and Deposition. Advanced Materials Research, 0, 488-489, 960-966.	0.3	2
58	Tool Wear of Aluminum/Chromium/Tungsten-Based-Coated Cemented Carbide in Cutting Hardened Sintered Steel. Applied Mechanics and Materials, 0, 772, 72-76.	0.2	4
59	Tool Wear of Cubic Boron Nitride in Intermittent Cutting of Hardened Steel ASTM D2 with High-Pressure Coolant Supply. Applied Mechanics and Materials, 0, 907, 19-25.	0.2	0