Jessica Jewell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8544172/publications.pdf

Version: 2024-02-01

218677 361022 3,248 40 26 35 h-index citations g-index papers 47 47 47 2947 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The concept of energy security: Beyond the four As. Energy Policy, 2014, 75, 415-421.	8.8	384
2	Integrating techno-economic, socio-technical and political perspectives on national energy transitions: A meta-theoretical framework. Energy Research and Social Science, 2018, 37, 175-190.	6.4	331
3	The three perspectives on energy security: intellectual history, disciplinary roots and the potential for integration. Current Opinion in Environmental Sustainability, 2011, 3, 202-212.	6.3	225
4	Covid-19 and the politics of sustainable energy transitions. Energy Research and Social Science, 2020, 68, 101685.	6.4	221
5	National growth dynamics of wind and solar power compared to the growth required for global climate targets. Nature Energy, 2021, 6, 742-754.	39.5	165
6	Post-2020 climate agreements in the major economies assessed in the light of global models. Nature Climate Change, 2015, 5, 119-126.	18.8	158
7	Energy security under de-carbonization scenarios: An assessment framework and evaluation under different technology and policy choices. Energy Policy, 2014, 65, 743-760.	8.8	157
8	$2~{\hat {\sf A}}^{\circ}{\sf C}$ and SDGs: united they stand, divided they fall?. Environmental Research Letters, 2016, 11, 034022.	5.2	143
9	Comparing electricity transitions: A historical analysis of nuclear, wind and solar power in Germany and Japan. Energy Policy, 2017, 101, 612-628.	8.8	130
10	Prospects for powering past coal. Nature Climate Change, 2019, 9, 592-597.	18.8	126
11	Limited emission reductions from fuel subsidy removal except in energy-exporting regions. Nature, 2018, 554, 229-233.	27.8	125
12	Governing Global Energy: Systems, Transitions, Complexity. Global Policy, 2011, 2, 75-88.	1.7	104
13	On the political feasibility of climate change mitigation pathways: Is it too late to keep warming below 1.5ŰC?. Wiley Interdisciplinary Reviews: Climate Change, 2020, 11, e621.	8.1	88
14	Ready for nuclear energy?: An assessment of capacities and motivations for launching new national nuclear power programs. Energy Policy, 2011, 39, 1041-1055.	8.8	85
15	Integrating Global Climate Change Mitigation Goals with Other Sustainability Objectives: A Synthesis. Annual Review of Environment and Resources, 2015, 40, 363-394.	13.4	83
16	Global energy security under different climate policies, GDP growth rates and fossil resource availabilities. Climatic Change, 2016, 136, 83-94.	3.6	61
17	THE DISTRIBUTION OF THE MAJOR ECONOMIES' EFFORT IN THE DURBAN PLATFORM SCENARIOS. Climate Change Economics, 2013, 04, 1340009.	5.0	59
18	Comparison and interactions between the long-term pursuit of energy independence and climate policies. Nature Energy, 2016, 1 , .	39.5	58

#	Article	IF	Citations
19	Solar has greater techno-economic resource suitability than wind for replacing coal mining jobs. Environmental Research Letters, 2020, 15, 034065.	5.2	58
20	Securitization of energy supply chains in China. Applied Energy, 2014, 123, 316-326.	10.1	55
21	Debating the bedrock of climate-change mitigation scenarios. Nature, 2019, 573, 348-349.	27.8	49
22	Energy and Security., 0,, 325-384.		44
23	Meeting well-below 2°C target would increase energy sector jobs globally. One Earth, 2021, 4, 1026-1036.	6.8	44
24	Quantifying uncertainties influencing the long-term impacts of oil prices on energy markets \hat{A} and carbon emissions. Nature Energy, 2016, 1, .	39.5	41
25	Liquefied natural gas expansion plans in Germany: The risk of gas lock-in under energy transitions. Energy Research and Social Science, 2021, 76, 102059.	6.4	39
26	ENERGY SECURITY OF CHINA, INDIA, THE E.U. AND THE U.S. UNDER LONG-TERM SCENARIOS: RESULTS FROM SIX IAMs. Climate Change Economics, 2013, 04, 1340011.	5.0	33
27	The last lavas erupted during the main phase of the Siberian flood volcanic province: results from experimental petrology. Contributions To Mineralogy and Petrology, 2006, 153, 191-209.	3.1	31
28	Historical precedents and feasibility of rapid coal and gas decline required for the 1.5 \hat{A}° C target. One Earth, 2021, 4, 1477-1490.	6.8	30
29	Failing the formative phase: The global diffusion of nuclear power is limited by national markets. Energy Research and Social Science, 2021, 80, 102221.	6.4	23
30	Introducing nuclear power in Turkey: A historic state strategy and future prospects. Energy Research and Social Science, 2015, 10, 273-282.	6.4	20
31	The international technological nuclear cooperation landscape: A new dataset and network analysis. Energy Policy, 2019, 128, 838-852.	8.8	20
32	Energy security assessment framework and three case studies. , 2013, , .		13
33	A nuclear-powered North Africa: Just a desert mirage or is there something on the horizon?. Energy Policy, 2011, 39, 4445-4457.	8.8	9
34	Phases of fossil fuel decline: Diagnostic framework for policy sequencing and feasible transition pathways in resource dependent regions. , 2022, 1 , .		9
35	International political economy of nuclear energy. , 2018, , .		5
36	Pathway to a land-neutral expansion of Brazilian renewable fuel production. Nature Communications, 2022, 13, .	12.8	5

#	Article	IF	CITATIONS
37	Renewables targeted before Fukushima. Nature, 2016, 533, 36-36.	27.8	4
38	Reply to: Why fossil fuel producer subsidies matter. Nature, 2020, 578, E5-E7.	27.8	3
39	Regional Low-Emission Pathways from Global Models. SSRN Electronic Journal, 0, , .	0.4	1
40	Vision Statement for the Planet in 2050., 2014, , 51-53.		0