Guohua Xi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8544031/publications.pdf Version: 2024-02-01

Споних Хг

#	Article	IF	CITATIONS
1	Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurology, The, 2006, 5, 53-63.	10.2	1,211
2	Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurology, The, 2012, 11, 720-731.	10.2	980
3	Behavioral Tests After Intracerebral Hemorrhage in the Rat. Stroke, 2002, 33, 2478-2484.	2.0	454
4	Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. Journal of Neurosurgery, 2002, 96, 287-293.	1.6	402
5	Iron and Iron-Handling Proteins in the Brain After Intracerebral Hemorrhage. Stroke, 2003, 34, 2964-2969.	2.0	365
6	Role of Blood Clot Formation on Early Edema Development After Experimental Intracerebral Hemorrhage. Stroke, 1998, 29, 2580-2586.	2.0	329
7	The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: deleterious or protective?. Journal of Neurochemistry, 2003, 84, 3-9.	3.9	317
8	Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. Journal of Neurosurgery, 1998, 89, 991-996.	1.6	295
9	Lobar Intracerebral Hemorrhage Model in Pigs. Stroke, 1996, 27, 490-497.	2.0	263
10	Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. Journal of Neurosurgery, 2004, 100, 672-678.	1.6	259
11	Brain Injury After Intracerebral Hemorrhage. Stroke, 2007, 38, 759-762.	2.0	256
12	Long-term effects of experimental intracerebral hemorrhage: the role of iron. Journal of Neurosurgery, 2006, 104, 305-312.	1.6	216
13	Attenuation of Thrombin-Induced Brain Edema by Cerebral Thrombin Preconditioning. Stroke, 1999, 30, 1247-1255.	2.0	204
14	Oxidative brain injury from extravasated erythrocytes after intracerebral hemorrhage. Brain Research, 2002, 953, 45-52.	2.2	201
15	Pathophysiology of brain edema formation. Neurosurgery Clinics of North America, 2002, 13, 371-383.	1.7	192
16	Mechanisms of Edema Formation After Intracerebral Hemorrhage. Stroke, 2001, 32, 2932-2938.	2.0	191
17	Mechanisms of Hydrocephalus After Neonatal and Adult Intraventricular Hemorrhage. Translational Stroke Research, 2012, 3, 25-38.	4.2	179
18	Vascular disruption and blood–brain barrier dysfunction in intracerebral hemorrhage. Fluids and Barriers of the CNS, 2014, 11, 18.	5.0	174

#	Article	IF	CITATIONS
19	Injury mechanisms in acute intracerebral hemorrhage. Neuropharmacology, 2018, 134, 240-248.	4.1	168
20	Deferoxamine Reduces Intracerebral Hematoma-Induced Iron Accumulation and Neuronal Death in Piglets. Stroke, 2009, 40, 2241-2243.	2.0	156
21	Complement activation in the brain after experimental intracerebral hemorrhage. Journal of Neurosurgery, 2000, 92, 1016-1022.	1.6	154
22	Deferoxamine mesylate in patients with intracerebral haemorrhage (i-DEF): a multicentre, randomised, placebo-controlled, double-blind phase 2 trial. Lancet Neurology, The, 2019, 18, 428-438.	10.2	154
23	Hemoglobin and Iron Handling in Brain after Subarachnoid Hemorrhage and the Effect of Deferoxamine on Early Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 1793-1803.	4.3	142
24	Ultra-early clot aspiration after lysis with tissue plasminogen activator in a porcine model of intracerebral hemorrhage: edema reduction and blood-brain barrier protection. Journal of Neurosurgery, 1999, 90, 491-498.	1.6	141
25	Oxidative DNA injury after experimental intracerebral hemorrhage. Brain Research, 2005, 1039, 30-36.	2.2	141
26	Role of Iron in Brain Injury After Intraventricular Hemorrhage. Stroke, 2011, 42, 465-470.	2.0	141
27	Progress in translational research on intracerebral hemorrhage: Is there an end in sight?. Progress in Neurobiology, 2014, 115, 45-63.	5.7	132
28	Effects of Deferoxamine on Intracerebral Hemorrhage-Induced Brain Injury in Aged Rats. Stroke, 2009, 40, 1858-1863.	2.0	131
29	Safety and Tolerability of Deferoxamine Mesylate in Patients With Acute Intracerebral Hemorrhage. Stroke, 2011, 42, 3067-3074.	2.0	129
30	Intracerebral Hemorrhage. Stroke, 2004, 35, 2571-2575.	2.0	127
31	Edaravone Attenuates Brain Edema and Neurologic Deficits in a Rat Model of Acute Intracerebral Hemorrhage. Stroke, 2008, 39, 463-469.	2.0	126
32	Brain endothelial cell junctions after cerebral hemorrhage: Changes, mechanisms and therapeutic targets. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1255-1275.	4.3	123
33	Delayed Argatroban Treatment Reduces Edema in a Rat Model of Intracerebral Hemorrhage. Stroke, 2002, 33, 3012-3018.	2.0	121
34	Microglia Activation and Polarization After Intracerebral Hemorrhage in Mice: the Role of Protease-Activated Receptor-1. Translational Stroke Research, 2016, 7, 478-487.	4.2	120
35	Systemic Complement Depletion Diminishes Perihematomal Brain Edema in Rats. Stroke, 2001, 32, 162-167.	2.0	119
36	Tumor Necrosis Factor-α Increases in the Brain after Intracerebral Hemorrhage and Thrombin Stimulation. Neurosurgery, 2006, 58, 542-550.	1.1	117

Сиониа Xi

#	Article	IF	CITATIONS
37	Role of Red Blood Cell Lysis and Iron in Hydrocephalus after Intraventricular Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1070-1075.	4.3	117
38	Attenuation of Ischemic Brain EDEMA and Cerebrovascular Injury after Ischemic Preconditioning in the Rat. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 22-33.	4.3	115
39	Intracerebral Hemorrhage in Mice: Model Characterization and Application for Genetically Modified Mice. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 487-494.	4.3	113
40	Deferoxamine Treatment for Intracerebral Hemorrhage in Aged Rats. Stroke, 2010, 41, 375-382.	2.0	113
41	Minocycline-Induced Attenuation of Iron Overload and Brain Injury After Experimental Intracerebral Hemorrhage. Stroke, 2011, 42, 3587-3593.	2.0	110
42	COMPARISON OF EXPERIMENTAL RAT MODELS OF EARLY BRAIN INJURY AFTER SUBARACHNOID HEMORRHAGE. Neurosurgery, 2009, 65, 331-343.	1.1	107
43	Autophagy after Experimental Intracerebral Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 897-905.	4.3	106
44	Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models. Science Translational Medicine, 2016, 8, 328ra29.	12.4	106
45	Brain iron overload following intracranial haemorrhage. Stroke and Vascular Neurology, 2016, 1, 172-184.	3.3	101
46	Hematoma Changes During Clot Resolution After Experimental Intracerebral Hemorrhage. Stroke, 2016, 47, 1626-1631.	2.0	96
47	Microglia/Macrophage Polarization After Experimental Intracerebral Hemorrhage. Translational Stroke Research, 2015, 6, 407-409.	4.2	94
48	Attenuation of intracerebral hemorrhage and thrombin-induced brain edema by overexpression of interleukin-1 receptor antagonist. Journal of Neurosurgery, 2001, 95, 680-686.	1.6	91
49	Thrombin-Receptor Activation and Thrombin-Induced Brain Tolerance. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 404-410.	4.3	89
50	Early Erythrolysis in the Hematoma After Experimental Intracerebral Hemorrhage. Translational Stroke Research, 2017, 8, 174-182.	4.2	88
51	The Role of Complement C3 in Intracerebral Hemorrhage-Induced Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 1490-1495.	4.3	84
52	Hyperbaric Oxygen-Induced Attenuation of Hemorrhagic Transformation After Experimental Focal Transient Cerebral Ischemia. Stroke, 2007, 38, 1362-1367.	2.0	84
53	Activated autophagy pathway in experimental subarachnoid hemorrhage. Brain Research, 2009, 1287, 126-135.	2.2	84
54	Deferoxamine Reduces Neuronal Death and Hematoma Lysis After Intracerebral Hemorrhage in Aged Rats. Translational Stroke Research, 2013, 4, 546-553.	4.2	84

#	Article	IF	CITATIONS
55	Role of Hemoglobin and Iron in Hydrocephalus After Neonatal Intraventricular Hemorrhage. Neurosurgery, 2014, 75, 696-706.	1.1	83
56	Hydrocephalus after Intraventricular Hemorrhage: The Role of Thrombin. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 489-494.	4.3	79
57	Effects of Thrombin on Neurogenesis After Intracerebral Hemorrhage. Stroke, 2008, 39, 2079-2084.	2.0	76
58	Deferoxamine Attenuates Acute Hydrocephalus After Traumatic Brain Injury in Rats. Translational Stroke Research, 2014, 5, 586-594.	4.2	76
59	The effects of thrombin preconditioning on focal cerebral ischemia in rats. Brain Research, 2000, 867, 173-179.	2.2	74
60	Early metabolic alterations in edematous perihematomal brain regions following experimental intracerebral hemorrhage. Journal of Neurosurgery, 1998, 88, 1058-1065.	1.6	73
61	The Deleterious or Beneficial Effects of Different Agents in Intracerebral Hemorrhage. Stroke, 2005, 36, 1594-1596.	2.0	73
62	Minocycline reduces intracerebral hemorrhage-induced brain injury. Neurological Research, 2009, 31, 183-188.	1.3	72
63	Subarachnoid Hemorrhage-Induced Hydrocephalus in Rats. Stroke, 2013, 44, 547-550.	2.0	72
64	White Matter Injury After Subarachnoid Hemorrhage. Stroke, 2015, 46, 2909-2915.	2.0	72
65	Deferoxamine Attenuates White Matter Injury in a Piglet Intracerebral Hemorrhage Model. Stroke, 2014, 45, 290-292.	2.0	70
66	Brain Edema after Intracerebral Hemorrhage: The Effects of Systemic Complement Depletion. , 2002, 81, 253-256.		70
67	Intracerebral Hemorrhage: Pathophysiology and Therapy. Neurocritical Care, 2004, 1, 5-18.	2.4	69
68	Hypoxia-Inducible Factor-1α Accumulation in the Brain after Experimental Intracerebral Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 689-696.	4.3	67
69	Thrombin Preconditioning Attenuates Brain Edema Induced by Erythrocytes and Iron. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 1448-1454.	4.3	67
70	Role of Erythrocyte CD47 in Intracerebral Hematoma Clearance. Stroke, 2016, 47, 505-511.	2.0	67
71	Intracerebral Hirudin Injection Attenuates Ischemic Damage and Neurologic Deficits without Altering Local Cerebral Blood Flow. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 159-166.	4.3	66
72	Plasminogen Activator Inhibitor-1 Induction after Experimental Intracerebral Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 55-61.	4.3	65

#	Article	IF	CITATIONS
73	CD163 Expression in Neurons After Experimental Intracerebral Hemorrhage. Stroke, 2017, 48, 1369-1375.	2.0	65
74	Holo-Transferrin and Thrombin Can Interact to Cause Brain Damage. Stroke, 2005, 36, 348-352.	2.0	64
75	Role of iron in brain lipocalin 2 upregulation after intracerebral hemorrhage in rats. Brain Research, 2013, 1505, 86-92.	2.2	64
76	Estrogen therapy for experimental intracerebral hemorrhage in rats. Journal of Neurosurgery, 2005, 103, 97-103.	1.6	62
77	Hemoglobin-induced neuronal degeneration in the hippocampus after neonatal intraventricular hemorrhage. Brain Research, 2016, 1635, 86-94.	2.2	61
78	Enhancement of Hematoma Clearance With CD47 Blocking Antibody in Experimental Intracerebral Hemorrhage. Stroke, 2019, 50, 1539-1547.	2.0	61
79	Acute White Matter Injury After Experimental Subarachnoid Hemorrhage. Stroke, 2014, 45, 2141-2143.	2.0	60
80	Intraventricular Hemorrhage: the Role of Blood Components in Secondary Injury and Hydrocephalus. Translational Stroke Research, 2016, 7, 447-451.	4.2	60
81	Critical Role of the Sphingolipid Pathway in Stroke: a Review of Current Utility and Potential Therapeutic Targets. Translational Stroke Research, 2016, 7, 420-438.	4.2	58
82	A New Hippocampal Model for Examining Intracerebral Hemorrhage-Related Neuronal Death. Stroke, 2007, 38, 2861-2863.	2.0	57
83	Inhibition of Carbonic Anhydrase Reduces Brain Injury After Intracerebral Hemorrhage. Translational Stroke Research, 2012, 3, 130-137.	4.2	57
84	Challenges for intraventricular hemorrhage research and emerging therapeutic targets. Expert Opinion on Therapeutic Targets, 2017, 21, 1111-1122.	3.4	55
85	Hematoma clearance as a therapeutic target in intracerebral hemorrhage: From macro to micro. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 741-745.	4.3	53
86	Role of Lipocalin-2 in Brain Injury after Intracerebral Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1454-1461.	4.3	52
87	Effects of Cerebral Ischemia on Neuronal Hemoglobin. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 596-605.	4.3	51
88	Role of Protease-Activated Receptor-1 in Brain Injury After Experimental Global Cerebral Ischemia. Stroke, 2012, 43, 2476-2482.	2.0	48
89	Thrombin-Induced Cerebral Hemorrhage: Role of Protease-Activated Receptor-1. Translational Stroke Research, 2014, 5, 472-475.	4.2	48
90	Thrombin-induced autophagy: A potential role in intracerebral hemorrhage. Brain Research, 2011, 1424, 60-66.	2.2	47

#	Article	IF	CITATIONS
91	Minocycline attenuates brain injury and iron overload after intracerebral hemorrhage in aged female rats. Neurobiology of Disease, 2019, 126, 76-84.	4.4	46
92	The Role of Thrombin in Brain Injury After Hemorrhagic and Ischemic Stroke. Translational Stroke Research, 2021, 12, 496-511.	4.2	46
93	T2* Magnetic Resonance Imaging Sequences Reflect Brain Tissue Iron Deposition Following Intracerebral Hemorrhage. Translational Stroke Research, 2010, 1, 31-34.	4.2	45
94	CD163, a Hemoglobin/Haptoglobin Scavenger Receptor, After Intracerebral Hemorrhage: Functions in Microglia/Macrophages Versus Neurons. Translational Stroke Research, 2017, 8, 612-616.	4.2	45
95	Minocycline Effects on Intracerebral Hemorrhage-Induced Iron Overload in Aged Rats. Stroke, 2018, 49, 995-1002.	2.0	44
96	MRI Characterization in the Acute Phase of Experimental Subarachnoid Hemorrhage. Translational Stroke Research, 2017, 8, 234-243.	4.2	42
97	Endothelial Targets in Stroke. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2240-2247.	2.4	42
98	Brain Ceruloplasmin Expression After Experimental Intracerebral Hemorrhage and Protection Against Iron-Induced Brain Injury. Translational Stroke Research, 2019, 10, 112-119.	4.2	42
99	Basic and Translational Research in Intracerebral Hemorrhage. Stroke, 2018, 49, 1308-1314.	2.0	41
100	Effects of deferoxamine on brain injury after transient focal cerebral ischemia in rats with hyperglycemia. Brain Research, 2009, 1291, 113-121.	2.2	40
101	Brain Alpha- and Beta-Globin Expression after Intracerebral Hemorrhage. Translational Stroke Research, 2010, 1, 48-56.	4.2	40
102	Deferoxamine reduces intracerebral hemorrhage-induced white matter damage in aged rats. Experimental Neurology, 2015, 272, 128-134.	4.1	40
103	Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. Neurosurgical Focus, 2003, 15, 1-7.	2.3	39
104	Novel targets, treatments, and advanced models for intracerebral haemorrhage. EBioMedicine, 2022, 76, 103880.	6.1	39
105	Activation of c-Jun-N-terminal kinase in a rat model of intracerebral hemorrhage: The role of iron. Neuroscience Research, 2009, 63, 100-105.	1.9	38
106	Diffusion tensor imaging in hemorrhagic stroke. Experimental Neurology, 2015, 272, 88-96.	4.1	38
107	CD47 Blocking Antibody Accelerates Hematoma Clearance After Intracerebral Hemorrhage in Aged Rats. Translational Stroke Research, 2020, 11, 541-551.	4.2	37
108	Activation of p44/42 mitogen activated protein kinases in thrombin-induced brain tolerance. Brain Research, 2001, 895, 153-159.	2.2	36

Сиониа Xi

#	Article	IF	CITATIONS
109	Thrombin preconditioning provides protection in a 6-hydroxydopamine Parkinson's disease model. Neuroscience Letters, 2005, 373, 189-194.	2.1	36
110	Intercellular cross-talk in intracerebral hemorrhage. Brain Research, 2015, 1623, 97-109.	2.2	35
111	Complement Inhibition Attenuates Early Erythrolysis in the Hematoma and Brain Injury in Aged Rats. Stroke, 2019, 50, 1859-1868.	2.0	33
112	Preconditioning with hyperbaric oxygen attenuates brain edema after experimental intracerebral hemorrhage. Neurosurgical Focus, 2007, 22, 1-6.	2.3	32
113	Lipocalin 2 and Blood-Brain Barrier Disruption in White Matter after Experimental Subarachnoid Hemorrhage. Acta Neurochirurgica Supplementum, 2016, 121, 131-134.	1.0	32
114	Thrombin and Brain Recovery After Intracerebral Hemorrhage. Stroke, 2009, 40, S88-9.	2.0	31
115	Is There a Place for Cerebral Preconditioning in the Clinic?. Translational Stroke Research, 2010, 1, 4-18.	4.2	31
116	Brain injury after intracerebral hemorrhage in spontaneously hypertensive rats. Journal of Neurosurgery, 2011, 114, 1805-1811.	1.6	31
117	Brain CD47 expression in a swine model of intracerebral hemorrhage. Brain Research, 2014, 1574, 70-76.	2.2	31
118	Effects of minocycline on epiplexus macrophage activation, choroid plexus injury and hydrocephalus development in spontaneous hypertensive rats. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1936-1948.	4.3	31
119	Nestin expression after experimental intracerebral hemorrhage. Brain Research, 2003, 981, 108-117.	2.2	30
120	Intracerebral Hemorrhage–Induced Brain Injury in Rats: the Role of Extracellular Peroxiredoxin 2. Translational Stroke Research, 2020, 11, 288-295.	4.2	30
121	Protease-activated receptor-1 mediates protection elicited by thrombin preconditioning in a rat 6-hydroxydopamine model of Parkinson's disease. Brain Research, 2006, 1116, 177-186.	2.2	29
122	Intracerebral Hemorrhage: A Multimodality Approach to Improving Outcome. Translational Stroke Research, 2014, 5, 313-315.	4.2	29
123	Iron-Induced Necrotic Brain Cell Death in Rats with Different Aerobic Capacity. Translational Stroke Research, 2015, 6, 215-223.	4.2	29
124	Early Hemolysis Within Human Intracerebral Hematomas: an MRI Study. Translational Stroke Research, 2019, 10, 52-56.	4.2	29
125	DARPP-32 to Quantify Intracerebral Hemorrhage-Induced Neuronal Death in Basal Ganglia. Translational Stroke Research, 2013, 4, 130-134.	4.2	28
126	Deferoxamine therapy reduces brain hemin accumulation after intracerebral hemorrhage in piglets. Experimental Neurology, 2019, 318, 244-250.	4.1	28

#	Article	IF	CITATIONS
127	Activation of epiplexus macrophages in hydrocephalus caused by subarachnoid hemorrhage and thrombin. CNS Neuroscience and Therapeutics, 2019, 25, 1134-1141.	3.9	27
128	Prx2 (Peroxiredoxin 2) as a Cause of Hydrocephalus After Intraventricular Hemorrhage. Stroke, 2020, 51, 1578-1586.	2.0	27
129	Tissue-type transglutaminase and the effects of cystamine on intracerebral hemorrhage-induced brain edema and neurological deficits. Brain Research, 2009, 1249, 229-236.	2.2	26
130	Multinucleated Giant Cells in Experimental Intracerebral Hemorrhage. Translational Stroke Research, 2020, 11, 1095-1102.	4.2	26
131	White matter T2 hyperintensities and bloodâ€brain barrier disruption in the hyperacute stage of subarachnoid hemorrhage in male mice: The role of lipocalinâ€2. CNS Neuroscience and Therapeutics, 2019, 25, 1207-1214.	3.9	25
132	Mechanisms of neuroinflammation in hydrocephalus after intraventricular hemorrhage: a review. Fluids and Barriers of the CNS, 2022, 19, 28.	5.0	25
133	Effects of Progesterone and Testosterone on ICH-Induced Brain Injury in Rats. Acta Neurochirurgica Supplementum, 2011, 111, 289-293.	1.0	24
134	Thrombin exacerbates brain edema in focal cerebral ischemia. , 2003, 86, 163-166.		24
135	Ischemic Preconditioning Attenuates Brain Edema After Experimental Intracerebral Hemorrhage. Translational Stroke Research, 2012, 3, 180-187.	4.2	23
136	Cerebral Hemorrhage, Brain Edema, and Heme Oxygenase-1 Expression After Experimental Traumatic Brain Injury. , 2013, 118, 83-87.		23
137	New Grading System Based on Magnetic Resonance Imaging in a Mouse Model of Subarachnoid Hemorrhage. Stroke, 2015, 46, 582-584.	2.0	22
138	Role of Lipocalin-2 in Thrombin-Induced Brain Injury. Stroke, 2016, 47, 1078-1084.	2.0	21
139	The role of complement in brain injury following intracerebral hemorrhage: A review. Experimental Neurology, 2021, 340, 113654.	4.1	21
140	Role of Complement Component 3 in Early Erythrolysis in the Hematoma After Experimental Intracerebral Hemorrhage. Stroke, 2021, 52, 2649-2660.	2.0	21
141	Effects of Aging on Autophagy After Experimental Intracerebral Hemorrhage. Acta Neurochirurgica Supplementum, 2011, 111, 113-117.	1.0	21
142	Iron Enhances the Neurotoxicity of Amyloid \hat{I}^2 . Translational Stroke Research, 2012, 3, 107-113.	4.2	20
143	Thrombin-induced neuronal protection: Role of the mitogen activated protein kinase/ribosomal protein S6 kinase pathway. Brain Research, 2010, 1361, 93-101.	2.2	19
144	Deferoxamine Attenuated the Upregulation of Lipocalin-2 Induced by Traumatic Brain Injury in Rats. Acta Neurochirurgica Supplementum, 2016, 121, 291-294.	1.0	19

#	Article	IF	CITATIONS
145	Perihematomal brain tissue iron concentration measurement by MRI in patients with intracerebral hemorrhage. CNS Neuroscience and Therapeutics, 2020, 26, 896-901.	3.9	19
146	Hemorrhagic Transformation Induced by Acute Hyperglycemia in a Rat Model of Transient Focal Ischemia. Acta Neurochirurgica Supplementum, 2011, 111, 49-54.	1.0	18
147	Thrombin Preconditioning, Heat Shock Proteins and Thrombin-Induced Brain Edema. , 2000, 76, 511-515.		17
148	Ischemic preconditioning procedure induces behavioral deficits in the absence of brain injury?. Neurological Research, 2005, 27, 261-267.	1.3	17
149	Minocycline Attenuates Iron-Induced Brain Injury. Acta Neurochirurgica Supplementum, 2016, 121, 361-365.	1.0	17
150	The effect of thrombin on a 6-hydroxydopamine model of Parkinson's disease depends on timing. Behavioural Brain Research, 2007, 183, 161-168.	2.2	16
151	Deferoxamine Reduces Cavity Size in the Brain After Intracerebral Hemorrhage in Aged Rats. Acta Neurochirurgica Supplementum, 2011, 111, 185-190.	1.0	16
152	Iron—Potential Therapeutic Target in Hemorrhagic Stroke. World Neurosurgery, 2013, 79, 7-9.	1.3	16
153	Correlating Cerebral 18FDG PET-CT Patterns with Histological Analysis During Early Brain Injury in a Rat Subarachnoid Hemorrhage Model. Translational Stroke Research, 2015, 6, 290-295.	4.2	16
154	Ultra-Early Cerebral Thrombosis Formation After Experimental Subarachnoid Hemorrhage Detected on T2* Magnetic Resonance Imaging. Stroke, 2021, 52, 1033-1042.	2.0	16
155	CD47 blocking antibody accelerates hematoma clearance and alleviates hydrocephalus after experimental intraventricular hemorrhage. Neurobiology of Disease, 2021, 155, 105384.	4.4	16
156	The Fate of Erythrocytes after Cerebral Hemorrhage. Translational Stroke Research, 2022, 13, 655-664.	4.2	16
157	Should the STAIR Criteria Be Modified for Preconditioning Studies?. Translational Stroke Research, 2013, 4, 3-14.	4.2	15
158	Role of lipocalin-2 in extracellular peroxiredoxin 2-induced brain swelling, inflammation and neuronal death. Experimental Neurology, 2021, 335, 113521.	4.1	15
159	Acetazolamide Attenuates Thrombin-Induced Hydrocephalus. Acta Neurochirurgica Supplementum, 2016, 121, 373-377.	1.0	15
160	Intracerebral Hemorrhage in the Iron-Deficient Rat. Stroke, 2005, 36, 660-664.	2.0	14
161	Intracerebral Hemorrhage: Mechanisms and Therapies. Translational Stroke Research, 2012, 3, 1-3.	4.2	14
162	Full Steam Ahead with Remote Ischemic Conditioning for Stroke. Translational Stroke Research, 2014, 5, 535-537.	4.2	14

#	Article	IF	CITATIONS
163	Hemorrhagic stroke—Pathomechanisms of injury and therapeutic options. CNS Neuroscience and Therapeutics, 2019, 25, 1073-1074.	3.9	14
164	Effects of aging on hydrocephalus after intraventricular hemorrhage. Fluids and Barriers of the CNS, 2020, 17, 8.	5.0	14
165	COA-Cl, a Novel Synthesized Nucleoside Analog, Exerts Neuroprotective Effects in the Acute Phase of Intracerebral Hemorrhage. Journal of Stroke and Cerebrovascular Diseases, 2016, 25, 2637-2643.	1.6	13
166	The Effect of Gender on Acute Hydrocephalus after Experimental Subarachnoid Hemorrhage. Acta Neurochirurgica Supplementum, 2016, 121, 335-339.	1.0	13
167	Effect of Deferoxamine on Outcome According to Baseline Hematoma Volume: A Post Hoc Analysis of the i-DEF Trial. Stroke, 2021, , STROKEAHA121035421.	2.0	13
168	Intra-hematomal White Matter Tracts Act As a Scaffold for Macrophage Infiltration After Intracerebral Hemorrhage. Translational Stroke Research, 2021, 12, 858-865.	4.2	12
169	Induction of Colligin may Attenuate Brain Edema Following Intracerebral Hemorrhage. , 2000, 76, 501-504.		12
170	Recent Research on Changes in Genomic Regulation and Protein Expression in Intracerebral Haemorrhage. International Journal of Stroke, 2007, 2, 265-269.	5.9	11
171	Hydrocephalus Induced by Intraventricular Peroxiredoxin-2: The Role of Macrophages in the Choroid Plexus. Biomolecules, 2021, 11, 654.	4.0	11
172	Assessing early erythrolysis and the relationship to perihematomal iron overload and white matter survival in human intracerebral hemorrhage. CNS Neuroscience and Therapeutics, 2021, 27, 1118-1126.	3.9	11
173	Impact of sex differences on thrombin-induced hydrocephalus and white matter injury: the role of neutrophils. Fluids and Barriers of the CNS, 2021, 18, 38.	5.0	11
174	Perihematomal Cerebral Tissue Iron Quantification on MRI Following Intracerebral Hemorrhage in Two Human Subjects: Proof of Principle. Acta Neurochirurgica Supplementum, 2016, 121, 179-183.	1.0	11
175	Hemoglobin Expression in Neurons and Glia After Intracerebral Hemorrhage. Acta Neurochirurgica Supplementum, 2011, 111, 133-137.	1.0	11
176	Thrombin up-regulates vascular endothelial growth factor in experimental gliomas. Neurological Research, 2009, 31, 759-765.	1.3	10
177	Susceptibility to intracerebral hemorrhage-induced brain injury segregates with low aerobic capacity in rats. Neurobiology of Disease, 2013, 49, 22-28.	4.4	10
178	A magnetic resonance imaging grading system for subarachnoid hemorrhage severity in a rat model. Journal of Neuroscience Methods, 2015, 243, 115-119.	2.5	10
179	Brain tissue iron quantification by MRI in intracerebral hemorrhage: Current translational evidence and pitfalls. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 562-564.	4.3	10
180	A combination of Deferoxamine mesylate and minimally invasive surgery with hematoma lysis for evacuation of intracerebral hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 456-458.	4.3	10

#	Article	IF	CITATIONS
181	Acute micro-thrombosis after subarachnoid hemorrhage: A new therapeutic target?. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2470-2472.	4.3	10
182	Tamoxifen Treatment for Intracerebral Hemorrhage. Acta Neurochirurgica Supplementum, 2011, 111, 271-275.	1.0	10
183	Zinc Protoporphyrin Attenuates White Matter Injury after Intracerebral Hemorrhage. Acta Neurochirurgica Supplementum, 2016, 121, 199-202.	1.0	9
184	Red Blood Cell Lysis and Brain Tissue-Type Transglutaminase Upregulation in a Hippocampal Model of Intracerebral Hemorrhage. Acta Neurochirurgica Supplementum, 2011, 111, 101-105.	1.0	8
185	Effects of Gender and Estrogen Receptors on Iron-Induced Brain Edema Formation. Acta Neurochirurgica Supplementum, 2016, 121, 341-345.	1.0	8
186	Thrombin preconditioning upregulates transferrin and transferrin receptor and reduces brain edema induced by lysed red blood cells. , 2003, 86, 449-452.		8
187	Acute Brain Injury after Subarachnoid Hemorrhage. World Neurosurgery, 2015, 84, 22-25.	1.3	7
188	Acute T2*-Weighted Magnetic Resonance Imaging Detectable Cerebral Thrombosis in a Rat Model of Subarachnoid Hemorrhage. Translational Stroke Research, 2021, , 1.	4.2	7
189	Effects of Aerobic Capacity on Thrombin-Induced Hydrocephalus and White Matter Injury. Acta Neurochirurgica Supplementum, 2016, 121, 379-384.	1.0	7
190	Thrombin-induced tolerance against oxygen-glucose deprivation in astrocytes: role of protease-activated receptor-1. Conditioning Medicine, 2018, 1, 57-63.	1.3	7
191	A timeline of oligodendrocyte death and proliferation following experimental subarachnoid hemorrhage. CNS Neuroscience and Therapeutics, 2022, 28, 842-850.	3.9	7
192	Intraventricular Injection of Noncellular Cerebrospinal Fluid from Subarachnoid Hemorrhage Patient into Rat Ventricles Leads to Ventricular Enlargement and Periventricular Injury. Acta Neurochirurgica Supplementum, 2016, 121, 331-334.	1.0	6
193	Cerebrospinal Fluid from Aneurysmal Subarachnoid Hemorrhage Patients Leads to Hydrocephalus in Nude Mice. Neurocritical Care, 2021, 34, 423-431.	2.4	5
194	White Matter Survival within and around the Hematoma: Quantification by MRI in Patients with Intracerebral Hemorrhage. Biomolecules, 2021, 11, 910.	4.0	5
195	Deferoxamine Affects Heat Shock Protein Expression in Heart after Intracerebral Hemorrhage in Aged Rats. Acta Neurochirurgica Supplementum, 2011, 111, 197-200.	1.0	5
196	T2 and T2* Magnetic Resonance Imaging Sequences Predict Brain Injury After Intracerebral Hemorrhage in Rats. Acta Neurochirurgica Supplementum, 2013, 118, 151-155.	1.0	5
197	Is there a central role for the cerebral endothelium and the vasculature in the brain response to conditioning stimuli?. Conditioning Medicine, 2018, 1, 220-232.	1.3	5
198	Correlation of thrombus formation on 7â€T MRI with histology in a rat carotid artery side wall aneurysm model. Journal of NeuroInterventional Surgery, 2014, 6, 780-784.	3.3	4

Сиониа Xi

#	Article	IF	CITATIONS
199	Delayed Minocycline Treatment Ameliorates Hydrocephalus Development and Choroid Plexus Inflammation in Spontaneously Hypertensive Rats. International Journal of Molecular Sciences, 2022, 23, 2306.	4.1	4
200	Clinical Translation of Cerebral Preconditioning. Translational Stroke Research, 2010, 1, 2-3.	4.2	3
201	Effect of Gender on Iron-induced Brain Injury in Low Aerobic Capacity Rats. Acta Neurochirurgica Supplementum, 2016, 121, 367-371.	1.0	3
202	Mechanisms of Post–Hemorrhagic Stroke Hydrocephalus Development: The Role of Kolmer Epiplexus Cells. World Neurosurgery, 2020, 144, 256-257.	1.3	3
203	Hydrocephalus Following Experimental Subarachnoid Hemorrhage in Rats with Different Aerobic Capacity. International Journal of Molecular Sciences, 2021, 22, 4489.	4.1	3
204	Thrombin Preconditioning Attenuates Iron-Induced Neuronal Death. Acta Neurochirurgica Supplementum, 2011, 111, 259-263.	1.0	3
205	Iron-Induced Hydrocephalus: the Role of Choroid Plexus Stromal Macrophages. Translational Stroke Research, 2023, 14, 238-249.	4.2	3
206	3CB2, a marker of radial glia, expression after experimental intracerebral hemorrhage: Role of thrombin. Brain Research, 2008, 1226, 156-162.	2.2	2
207	Editorial for the Third Pangu Stroke Conference. Experimental Neurology, 2015, 272, 1-3.	4.1	2
208	Basal Ganglia Damage in Experimental Subarachnoid Hemorrhage. Acta Neurochirurgica Supplementum, 2016, 121, 141-144.	1.0	2
209	Effects of Gender on Heart Injury After Intracerebral Hemorrhage in Rats. Acta Neurochirurgica Supplementum, 2011, 111, 119-122.	1.0	2
210	Geldanamycin Treatment During Cerebral Ischemia/Reperfusion Attenuates p44/42 Mitogen-Activated Protein Kinase Activation and Tissue Damage. Acta Neurochirurgica Supplementum, 2013, 118, 39-43.	1.0	2
211	Thrombin and secondary brain damage following intracerebral hemorrhage. , 0, , 206-216.		1
212	Ten Years and Counting: a Celebration of the 10th Anniversary of Translational Stroke Research. Translational Stroke Research, 2021, 12, 367-368.	4.2	1
213	Thrombin Preconditioning Reduces Iron-Induced Brain Swelling and Brain Atrophy. Acta Neurochirurgica Supplementum, 2011, 111, 219-223.	1.0	1
214	Protease Activated Receptor-1 and Brain Edema Formation in Glioma Models. , 2013, 118, 191-194.		1
215	Too big, too small: selecting hematoma sizes for inclusion in intracerebral hemorrhage-deferoxamine trials. Translational Stroke Research, 2022, , 1.	4.2	1
216	Intracerebral Hemorrhage and Intraventricular Hemorrhage–Induced Brain Injury. , 2007, , 281-287.		0

#	Article	IF	CITATIONS
217	Mechanisms of Cerebral Hemorrhage. , 2016, , 102-112.e6.		0
218	Response by Hua et al to Letter Regarding Article, "Enhancement of Hematoma Clearance With CD47 Blocking Antibody in Experimental Intracerebral Hemorrhage― Stroke, 2019, 50, e266.	2.0	0
219	The Two Faces of Estrogen in Experimental Hemorrhagic Stroke. Translational Stroke Research, 2021, , 1.	4.2	0
220	Mechanisms of Damage After Cerebral Hemorrhage. , 2022, , 92-102.e9.		0
221	Biochemical and Molecular Biological Assessments of Intracerebral Hemorrhage. Springer Protocols, 2012, , 663-674.	0.3	Ο
222	lron as a Therapeutic Target in Intracerebral Hemorrhage: Preclinical Testing of Deferoxamine. , 2012, , 403-416.		0
223	Preconditioning and Intracerebral Hemorrhage. , 2013, , 309-316.		0
224	Blood Injection Intracerebral Hemorrhage Pig Model. Springer Series in Translational Stroke Research, 2019, , 303-309.	0.1	0