
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8543594/publications.pdf Version: 2024-02-01

Ρανιίτ Καταρία

#	Article	IF	CITATIONS
1	Identification of novel allelic patterns and evolutionary lineage of BoLA MHC class II <i>DQA</i> locus in indicine and taurine cattle. Animal Biotechnology, 2022, 33, 1746-1752.	1.5	1
2	Genetic admixture and population structure analysis of Indian water buffaloes (Bubalus bubalis) using STR markers. Molecular Biology Reports, 2022, , 1.	2.3	0
3	Demographic pattern of A1/A2 beta casein variants indicates conservation of A2 type haplotype across native cattle breeds (Bos indicus) of India. 3 Biotech, 2022, 12, .	2.2	2
4	Assessment of genetic diversity and bottleneck in Purnathadi buffaloes using short tandem repeat markers. Animal Biotechnology, 2021, 32, 495-506.	1.5	3
5	Differential neutrophil gene expression in blood and milk during pre-implantation pregnancy in Karan Fries cattle. Biological Rhythm Research, 2021, 52, 680-687.	0.9	1
6	Alternate PCR assays for screening of JH1 mutation associated with embryonic death in Jersey cattle. Molecular and Cellular Probes, 2021, 55, 101688.	2.1	0
7	In Silico Analysis of HSP70 Gene Family in Bovine Genome. Biochemical Genetics, 2021, 59, 134-158.	1.7	6
8	Toll-like Receptors in Livestock Species. , 2021, , 49-60.		0
9	Cytogenetic analysis reveals the swamp status of the indigenous "Bhangor―buffalo population from Tripura state. Bhartiya Krishi Anusandhan Patrika, 2021, , .	0.0	0
10	Expression profile of different classes of proteases in milk derived somatic cells across different lactation stages of indigenous cows (Bos indicus) and riverine buffaloes (Bubalus bubalis). Animal Biotechnology, 2021, , 1-10.	1.5	2
11	Morphometric and microsatellite-based comparative genetic diversity analysis in <i>Bubalus bubalis</i> from North India. PeerJ, 2021, 9, e11846.	2.0	5
12	'Bhangor' - non-descript swamp buffalo population from North-East Indian state of Tripura. International Journal of Livestock Research, 2021, , 1.	0.1	0
13	Molecular Characterization of the Coding Region and 5' UTR of HSP70 Gene in Indian Riverine Buffalo Breeds. Indian Journal of Animal Research, 2021, , .	0.1	0
14	Current status and unique attributes of Indian Chilika buffalo for adaptation to brackish water ecology. Tropical Animal Health and Production, 2021, 53, 544.	1.4	2
15	Allelic diversity at BoLA DRB3 locus and association with predisposition to clinical mastitis in indicus and crossbred cattle. Animal Biotechnology, 2021, , 1-10.	1.5	1
16	Identification of Internal Reference Genes in Peripheral Blood Mononuclear Cells of Cattle Populations Adapted to Hot Arid Normoxia and Cold Arid Hypoxia Environments. Frontiers in Genetics, 2021, 12, 730599.	2.3	4
17	Evaluation of therapeutic potential of recombinant buffalo lactoferrin N-lobe expressed in <i>E. coli</i> . Animal Biotechnology, 2020, 31, 181-187.	1.5	0
18	Differential expression of cytokines in PBMC of <i>Bos indicus</i> and <i>Bos taurus</i> × <i>Bos indicus</i> cattle due to <i>Brucella abortus</i> S19 antigen. Animal Biotechnology, 2020, 31, 148-154.	1.5	3

#	Article	IF	CITATIONS
19	Diversity analysis at MHC class II DQA locus in buffalo (Bubalus bubalis) indicates extensive duplication and trans-species evolution. Genomics, 2020, 112, 4417-4426.	2.9	3
20	Genomic diversity and selection sweeps identified in Indian swamp buffaloes reveals it's uniqueness with riverine buffaloes. Genomics, 2020, 112, 2385-2392.	2.9	17
21	Mitochondrial sequenceâ€based evolutionary analysis of riverine–swamp hybrid buffaloes of India indicates novel maternal differentiation and domestication patterns. Animal Genetics, 2020, 51, 476-482.	1.7	10
22	Number of pregnancies and season of calving influence the production and reproduction traits in Nili-Ravi buffalo. Indian Journal of Dairy Science, 2020, 73, 443-448.	0.2	0
23	Identification of novel polymorphism in buffalo stanniocalcin-1 gene and its expression analysis in mammary gland under different stages of lactation. Journal of Genetics, 2019, 98, 1.	0.7	2
24	Microsatellite-based Genetic Diversity and Mutation-Drift Equilibrium in Dharwadi Buffalo (BubalusÂbubalis) of India. Agricultural Research, 2019, 8, 553-558.	1.7	1
25	Milk-derived mammary epithelial cells as non-invasive source to define stage-specific abundance of milk protein and fat synthesis transcripts in native Sahiwal cows and Murrah buffaloes. 3 Biotech, 2019, 9, 106.	2.2	4
26	Sequence-based structural analysis and evaluation of polymorphism in buffalo Nod-like receptor-1 gene. 3 Biotech, 2019, 9, 26.	2.2	1
27	Allelic diversity and locus duplication at the MHC Class II <i>DQ</i> subâ€region in the Indian yak population. Animal Genetics, 2019, 50, 112-113.	1.7	1
28	Comparative modeling and mutual docking of structurally uncharacterized heat shock protein 70 and heat shock factor-1 proteins in water buffalo. Veterinary World, 2019, 12, 2036-2045.	1.7	10
29	Detection of polymorphism in the promoter region of TNF-alpha gene of water buffalo (Bubalus) Tj ETQq1 1 0.78	34314 rgB 0.1	T /Qverlock 1
30	Identification of novel polymorphism in buffalo stanniocalcin-1 gene and its expression analysis in mammary gland under different stages of lactation. Journal of Genetics, 2019, 98, .	0.7	1
31	Transcriptome Analysis of Circulating PBMCs to Understand Mechanism of High Altitude Adaptation in Native Cattle of Ladakh Region. Scientific Reports, 2018, 8, 7681.	3.3	42
32	Identification of novel allelic variants at the <scp>MHC</scp> class <scp>II </scp> <i><scp>DQA</scp></i> locus in Murrah water buffalo. Animal Genetics, 2018, 49, 497-498.	1.7	0
33	Sequence Characterisation and Genotyping of Allelic Variants of Beta Casein Gene Establishes Native Cattle of Ladakh to be a Natural Resource for A2 Milk. Defence Life Science Journal, 2018, 3, 177.	0.3	10
34	Sequence Characterization and Insilico Anti-biofilm Activity Prediction of beta Defensin 103A in Tharparkar Cattle Breed and Taurine Cattle. International Journal of Livestock Research, 2018, 8, 1.	0.1	0
35	Evaluation of Physiological Parameters in Response to Endurance Exercise of Zanskar Ponies Adapted to High Altitude of Ladakh Region. Defence Life Science Journal, 2018, 3, 172.	0.3	0
36	Major histocompatibility complex (DRB3) geneexpression pattern indicates differences in BrucellaabortusS19 vaccine induced immune responsein Karan Fries and Sahiwal cattle. Indian Journal of Animal Research, 2018, , .	0.1	1

#	Article	IF	CITATIONS
37	Identification of genetic variation in NOD-like receptor 2 gene and influence of polymorphism on gene structure and function in buffalo (Bubalus bubalis). Research in Veterinary Science, 2017, 115, 43-50.	1.9	1
38	Expression Analysis of Genes Associated with Prolificacy in <i>FecB</i> Carrier and Noncarrier Indian Sheep. Animal Biotechnology, 2017, 28, 220-227.	1.5	17
39	PCR-SSCP analysis of MDGI gene and its association with milk production traits in river buffalo () Tj ETQq1 1 0.7	84314 rgB 1.9	T /Overlock
40	Evolutionary dynamics of meiotic recombination hotspots regulator PRDM9 in bovids. Molecular Genetics and Genomics, 2017, 292, 117-131.	2.1	15
41	Exploring polymorphism of prolactin gene and its possible association with repeat breeding in buffaloes. Gene Reports, 2017, 8, 24-29.	0.8	4
42	Chilika- A Distinct Registered Buffalo Breed of India. International Journal of Livestock Research, 2017, , 1.	0.1	4
43	Genetic diversity at MHC-DRB3 locus suggests distinctness of the riverine-swamp buffalo populations in North-East region of India. Indian Journal of Animal Research, 2017, , .	0.1	0
44	Computational Analysis of HSP-60 Protein with Structural Insights into Chaperonin Containing TCP-1 Subunit 5 in Bos Taurus. MOJ Proteomics & Bioinformatics, 2017, 6, .	0.1	1
45	Identification of internal control genes in milkâ€derived mammary epithelial cells during lactation cycle of <scp>I</scp> ndian zebu cow. Animal Science Journal, 2016, 87, 344-353.	1.4	14
46	Identification of polymorphism in fatty acid binding protein 3 (FABP3) gene and its association with milk fat traits in riverine buffalo (Bubalus bubalis). Tropical Animal Health and Production, 2016, 48, 849-853.	1.4	7
47	High genetic diversity and distribution of Bubu-DQA alleles in swamp buffaloes (Bubalus bubalis) Tj ETQq1 1 0.78	34314 rgB [*] 2.4	T /Øverlock
48	Molecular Characterization of Buffalo Haptoglobin: Sequence Based Structural Comparison Indicates Convergent Evolution Between Ruminants and Human. Animal Biotechnology, 2016, 27, 30-37.	1.5	4
49	Matrixâ€based threeâ€dimensional culture of buffalo mammary epithelial cells showed higher induction of genes related to milk protein and fatty acid metabolism. Cell Biology International, 2016, 40, 232-238.	3.0	5
50	Genetic diversity analysis of buffalo fatty acid synthase (FASN) gene and its differential expression among bovines. Gene, 2016, 575, 506-512.	2.2	6
51	Polymorphism analysis at FecB locus in Kajali sheep of India. Indian Journal of Animal Research, 2016, , .	0.1	0
52	Hae III locus at Major Histocompatibility Complex (MHC) class II region hints duplicated DQA genes in Indian mithun (Bos frontalis). Indian Journal of Animal Research, 2016, , .	0.1	0
53	Marker assisted evaluation of morphological and genetic attributes of sub-populations of Nili-Ravi buffalo: A vulnerable dairy type riverine breed of India. Russian Journal of Genetics, 2015, 51, 799-806.	0.6	1
54	Genetic analysis of river, swamp and hybrid buffaloes of northâ€east India throw new light on phylogeography of water buffalo <i>(Bubalus bubalis)</i> . Journal of Animal Breeding and Genetics, 2015, 132, 454-466.	2.0	29

#	Article	IF	CITATIONS
55	Transcriptional profiling of PRKG2-null growth plate identifies putative down-stream targets of PRKG2. BMC Research Notes, 2015, 8, 177.	1.4	9
56	Kinetics of lipogenic genes expression in milk purified mammary epithelial cells (MEC) across lactation and their correlation with milk and fat yield in buffalo. Research in Veterinary Science, 2015, 99, 129-136.	1.9	18
57	Association analysis of polymorphism in thyroglobulin gene promoter with milk production traits in riverine buffalo (Bubalus bubalis). Meta Gene, 2015, 5, 157-161.	0.6	5
58	Polymorphism in the coding region sequence of GDF8 Gene in Indian Sheep. Russian Journal of Genetics, 2015, 51, 1119-1122.	0.6	1
59	Polymorphism in Exon-40 of FASN Gene in Lesser known Buffalo breeds of India. Journal of Animal Research, 2015, 5, 325.	0.1	4
60	Stage Specific Expression of ATP-Binding Cassette and Solute Carrier Superfamily of Transporter Genes in Mammary Gland of Riverine Buffalo (Bubalus bubalis). Animal Biotechnology, 2014, 25, 200-209.	1.5	7
61	Genetic diversity analysis of the thyroglobulin gene promoter in buffalo and other bovines. Livestock Science, 2014, 167, 65-72.	1.6	4
62	Analysis of genetic variations across regulatory and coding regions of kappa-casein gene of Indian native cattle (Bos indicus) and buffalo (Bubalus bubalis). Meta Gene, 2014, 2, 769-781.	0.6	6
63	Caprine Tollâ€like receptor 8 gene sequence characterization reveals close relationships among ruminant species. International Journal of Immunogenetics, 2014, 41, 81-89.	1.8	1
64	Expression Profiling of Glucose Transporter 1 (GLUT1) and Apoptotic Genes (BAX and BCL2) in Milk Enriched Mammary Epithelial Cells (MEC) in Riverine Buffalo during Lactation. Animal Biotechnology, 2014, 25, 151-159.	1.5	8
65	Genetic Polymorphisms in the Bovine Toll-Like Receptor 4 (TLR4) and Monocyte Chemo Attractant Protein-1(CCL2) Genes: SNPs Distribution Analysis inBos indicusSahiwal Cattle Breed. Animal Biotechnology, 2014, 25, 250-265.	1.5	3
66	Peripheral blood mononuclear cells: a potential cellular system to understand differential heat shock response across native cattle (Bos indicus), exotic cattle (Bos taurus), and riverine buffaloes (Bubalus bubalis) of India. Cell Stress and Chaperones, 2014, 19, 613-621.	2.9	75
67	Sequence based structural characterization and genetic diversity analysis across coding and promoter regions of goat Toll-like receptor 5 gene. Gene, 2014, 540, 238-245.	2.2	5
68	Exploration of the binding modes of buffalo PGRP1 receptor complexed with meso-diaminopimelic acid and lysine-type peptidoglycans by molecular dynamics simulation and free energy calculation. Chemico-Biological Interactions, 2014, 220, 255-268.	4.0	8
69	Toll-Like Receptor Responses to Peste des petits ruminants Virus in Goats and Water Buffalo. PLoS ONE, 2014, 9, e111609.	2.5	28
70	Evaluating suitable internal control genes for transcriptional studies in heatâ€stressed mammary explants of buffaloes. Journal of Animal Breeding and Genetics, 2013, 130, 106-117.	2.0	10
71	Sequence characterization of river buffalo Tollâ€like receptor genes 1–10 reveals distinct relationship with cattle and sheep. International Journal of Immunogenetics, 2013, 40, 140-148.	1.8	10
72	Novel polymorphisms in UTR and coding region of inducible heat shock protein 70.1 gene in tropically adapted Indian zebu cattle (Bos indicus) and riverine buffalo (Bubalus bubalis). Gene, 2013, 527, 606-615.	2.2	39

#	Article	IF	CITATIONS
73	Structural and functional annotation of the porcine immunome. BMC Genomics, 2013, 14, 332.	2.8	203
74	Genetic diversity within 5′upstream region of Toll-like receptor 8 gene reveals differentiation of riverine and swamp buffaloes. Meta Gene, 2013, 1, 24-32.	0.6	12
75	Identification of suitable housekeeping genes for normalization of quantitative realâ€ŧime <scp>PCR</scp> data during different physiological stages of mammary gland in riverine buffaloes (<i><scp>B</scp>ubalus bubalis</i>). Journal of Animal Physiology and Animal Nutrition, 2013, 97, 1132-1141.	2.2	16
76	Milk proteins and human health: A1/A2 milk hypothesis. Indian Journal of Endocrinology and Metabolism, 2012, 16, 856.	0.4	21
77	Detection of Polymorphism and Sequence Characterization of Toll-Like Receptor 7 Gene of Indian Goat Revealing Close Relationship Between Ruminant Species. Animal Biotechnology, 2012, 23, 194-203.	1.5	5
78	Development of tetra-primers ARMS-PCR assay for the detection of A1551G polymorphism in TLR8 gene of riverine buffalo. Journal of Applied Animal Research, 2012, 40, 17-19.	1.2	5
79	Selection of suitable reference genes for quantitative gene expression studies in milk somatic cells of lactating cows (Bos indicus). Journal of Dairy Science, 2012, 95, 2935-2945.	3.4	25
80	PCR-SSCP analysis of leptin gene and its association with milk production traits in river buffalo (Bubalus bubalis). Tropical Animal Health and Production, 2012, 44, 1587-1592.	1.4	14
81	Sequence and topological characterization of Toll-like receptor 8 gene of Indian riverine buffalo (Bubalus bubalis). Tropical Animal Health and Production, 2012, 45, 91-99.	1.4	8
82	Power of exclusion of 19 microsatellite markers for parentage testing in river buffalo (Bubalus) Tj ETQq0 0 0 rg	BT /Overloo	ck 10 Tf 50 38
83	Identification of suitable housekeeping genes for expression analysis in mammary epithelial cells of buffalo (Bubalus bubalis) during lactation cycle. Livestock Science, 2012, 147, 72-76.	1.6	29
84	Semi-quantitative RT-PCR analysis of fat metabolism genes in mammary tissue of lactating and non-lactating water buffalo (Bubalus bubalis). Tropical Animal Health and Production, 2012, 44, 693-696.	1.4	8
85	Classical swine fever in the pigmy hog. OIE Revue Scientifique Et Technique, 2012, 31, 919-930.	1.2	18
86	Sequence analysis of Toll-like receptor genes 1–10 of goat (Capra hircus). Veterinary Immunology and Immunopathology, 2011, 140, 252-258.	1.2	23
87	Population structure and phylogeography of Toda buffalo in Nilgiris throw light on possible origin of aboriginal Toda tribe of South India. Journal of Animal Breeding and Genetics, 2011, 128, 295-304.	2.0	16
88	Association of toll-like receptor four single nucleotide polymorphisms with incidence of infectious bovine keratoconjunctivitis (IBK) in cattle. Immunogenetics, 2011, 63, 115-119.	2.4	21
89	Sequence Characterization of S100A8 Gene Reveals Structural Differences of Protein and Transcriptional Factor Binding Sites in Water Buffalo and Yak. Animal Biotechnology, 2011, 22, 124-132.	1.5	0
90	Genomic Analyses of Toll-like Receptor 4 and 7 Exons of Bos indicus from Temperate Sub-himalayan Region of India. Asian-Australasian Journal of Animal Sciences, 2011, 24, 1019-1025.	2.4	2

#	Article	IF	CITATIONS
91	Short tandem repeat based analysis of genetic variability in Kanarese buffalo of South India. Russian Journal of Genetics, 2010, 46, 988-993.	0.6	6
92	Molecular Characterization of Classical swine fever virus Involved in the Outbreak in Mizoram. Indian Journal of Virology: an Official Organ of Indian Virological Society, 2010, 21, 76-81.	0.7	12
93	Microsatellite-based genetic monitoring to detect cryptic demographic bottleneck in Indian riverine buffaloes (Bubalus bubalis). Tropical Animal Health and Production, 2010, 42, 849-855.	1.4	8
94	Seven novel single nucleotide polymorphisms identified within river buffalo (Bubalus bubalis) lactoferrin gene. Tropical Animal Health and Production, 2010, 42, 1021-1026.	1.4	3
95	5'-UTR-based phylogenetic analysis of Classical swine fever virus isolates from India. Acta Virologica, 2010, 54, 79-82.	0.8	25
96	Detection of Polymorphism in Exon 2 of Toll-like Receptor 4 Gene of Indian Buffaloes Using PCR-SSCP Technique. Journal of Applied Animal Research, 2010, 37, 265-268.	1.2	2
97	Microsatellite based genetic structuring reveals unique identity of Banni among river buffaloes of Western India. Livestock Science, 2010, 127, 257-261.	1.6	7
98	Short tandem repeat based analysis of genetic variability in Kanarese buffalo of South India. Russian Journal of Genetics, 2010, 46, 1108-14.	0.4	2
99	Assessment of Genetic Diversity, Mutation Drift Equilibrium and Mitochondrial D-Loop Variation in Toda buffalo—The Endangered Breed of South India. Journal of Applied Animal Research, 2009, 35, 67-72.	1.2	7
100	Sequence Analysis of the S10 Gene of Six Bluetongue Virus Isolates from India. Transboundary and Emerging Diseases, 2009, 56, 329-336.	3.0	4
101	Evaluation of genetic variability and mutation drift equilibrium of Banni buffalo using multi locus microsatellite markers. Tropical Animal Health and Production, 2009, 41, 1203-1211.	1.4	13
102	Riverine status and genetic structure of Chilika buffalo of eastern India as inferred from cytogenetic and molecular markerâ€based analysis. Journal of Animal Breeding and Genetics, 2009, 126, 69-79.	2.0	21
103	Genetic diversity and bottleneck analysis of Nagpuri buffalo breed of India based on microsatellite data. Russian Journal of Genetics, 2009, 45, 826-832.	0.6	15
104	Use of microsatellite multilocus genotypic data for individual assignment assay in six native cattle breeds from north-western region of India. Livestock Science, 2009, 121, 72-77.	1.6	5
105	Single nucleotide polymorphism (SNP) identification and sequence analysis of 5′ flanking region of lactoferrin gene in Indian buffaloes (Bubalus bubalis). Livestock Science, 2009, 121, 38-44.	1.6	5
106	Evaluation of genetic architecture and mutation drift equilibrium of Marathwada buffalo population in Central India. Livestock Science, 2009, 121, 288-293.	1.6	17
107	A nonsense mutation in cGMP-dependent type II protein kinase (<i>PRKG2</i>) causes dwarfism in American Angus cattle. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19250-19255.	7.1	48
108	Genetic diversity and bottleneck analysis of Nagpuri buffalo breed of India based on microsatellite data. Russian Journal of Genetics, 2009, 45, 941-8.	0.4	5

RANJIT KATARIA

#	Article	IF	CITATIONS
109	Novel Rath peptide for intracellular delivery of protein and nucleic acids. Biochemical and Biophysical Research Communications, 2008, 370, 27-32.	2.1	18
110	Survey and characterization of South Kanara buffaloes in India. Animal Genetic Resources Information, 2008, 43, 67-77.	0.1	4
111	Genetic Diversity in River Buffalo (<i>Bubalus bubalis</i>) Breeds of Central India using Heterologous Bovine Microsatellite Markers. Journal of Applied Animal Research, 2008, 33, 159-163.	1.2	2
112	Characterization of Osteopontin gene of Bubalus bubalis. Animal, 2008, 2, 987-990.	3.3	8
113	Construction and Evaluation of Directionally Cloned cDNA Libraries from Lactating and Non-lactating Mammary Gland of River Buffalo (Bubalus bubalis): A Resource for Gene Identification in Bubaline Genome. Journal of Applied Animal Research, 2008, 33, 81-84.	1.2	Ο
114	Isolation and Sequence Characterization of Mammary Derived Growth Inhibitor Gene of Riverine Buffalo (Bubalus Bubalis). Animal Biotechnology, 2007, 18, 123-130.	1.5	2
115	Sequence Analysis of VP2 Gene Hyper Variable Region of a Cell-culture Adapted Indian Classical Infectious Bursal Disease Virus of Chicken. Journal of Applied Animal Research, 2007, 32, 49-54.	1.2	2
116	Bluetongue virus induces apoptosis in cultured mammalian cells by both caspase-dependent extrinsic and intrinsic apoptotic pathways. Archives of Virology, 2007, 152, 1751-1756.	2.1	25
117	Molecular characterization of Indian isolates of infectious bursal disease virus from broiler chickens. DNA Sequence, 2006, 17, 431-439.	0.7	4
118	Sequence analysis of UTR and coding region of kappa-casein gene of Indian riverine buffalo (Bubalus) Tj ETQq0 C	0 rgBT /O	verlock 10 Tf
119	Rapid Detection of Brucella Species in Cattle Semen by PCR. Journal of Applied Animal Research, 2006, 30, 25-28.	1.2	3
120	Sequence analysis of VP7 gene of Indian bluetongue virus serotype-23 shows its close phylogenetic relationship to Australian and Chinese serotypes. DNA Sequence, 2006, 17, 65-73.	0.7	2
121	Detection of Infectious Bursal Disease Virus in Field Outbreaks in Broiler Chickens by Reverse Transcription-Polymerase Chain Reaction. International Journal of Poultry Science, 2005, 4, 239-243.	0.1	9
122	Differential detection of Newcastle disease virus strains by degenerate primers based RT-PCR. Comparative Immunology, Microbiology and Infectious Diseases, 2004, 27, 163-169.	1.6	20
123	Sequence Analysis of an Indian Field Isolate of Infectious Bursal Disease Virus Shows Six Unique Amino Acid Changes in the VP1 Gene. Veterinary Research Communications, 2004, 28, 641-646.	1.6	3
124	Differentiation of infectious bursal disease viruses by restriction enzyme analysis of RT-PCR amplified VP1 gene sequence. Comparative Immunology, Microbiology and Infectious Diseases, 2003, 26, 47-53.	1.6	8
125	Sequence analysis of segment a of a field virus isolate from an outbreak of Infectious bursal disease in India. Acta Virologica, 2003, 47, 73-7.	0.8	4

126Characterization of fowl adenovirus serotype-4 associated with hydropericardium syndrome in
chicken. Comparative Immunology, Microbiology and Infectious Diseases, 2002, 25, 139-147.1.619

#	Article	IF	CITATIONS
127	Sequence analysis of the VP2 gene hypervariable region of infectious bursal disease viruses from India. Avian Pathology, 2001, 30, 501-507.	2.0	18
128	Amino acid changes in the variable region of VP2 in three infectious bursal disease viruses with different virulence, originating from a common ancestor. Avian Pathology, 2001, 30, 667-673.	2.0	10
129	Identification of Trypanosoma evansi by DNA hybridisation using a non-radioactive probe generated by arbitrary primer PCR: Short communication. Acta Veterinaria Hungarica, 2001, 49, 191-195.	0.5	3
130	One-step RT-PCR for the detection of infectious bursal disease virus in clinical samples. Veterinary Research Communications, 2001, 25, 429-436.	1.6	6
131	Identification of Trypanosoma evansi by dna hybridisation using a non-radioactive probe generated by arbitrary primer pcr: Short communication. Acta Veterinaria Hungarica, 2001, 49, 191-195.	0.5	2
132	Pathotyping of Newcastle disease viruses by RT-PCR and restriction enzyme analysis. Veterinary Research Communications, 2000, 24, 275-286.	1.6	83
133	Characterization of an Indian bluetongue virus isolate by RT-PCR and restriction enzyme analysis of the VP-7 gene sequence. Veterinary Research Communications, 2000, 24, 401-409.	1.6	6
134	Sequence analysis of the cleavage site-encoding region of the fusion protein gene of Newcastle disease viruses from India and Nepal. Avian Pathology, 2000, 29, 603-607.	2.0	21
135	Differentiation of infectious bursal disease virus strains by restriction analysis of RT-PCR-amplified VP2 gene sequences. Acta Virologica, 1999, 43, 245-9.	0.8	12
136	Detection of infectious bursal disease virus of poultry in clinical samples by RTâ€₽CR. IUBMB Life, 1998, 45, 315-322.	3.4	15
137	Detection of bluetongue virus genome segment 6 sequences by RT-PCR. Indian Journal of Experimental Biology, 1998, 36, 1034-7.	0.0	3
138	Restriction Mapping of HindIII Fragment â€J' of Bovine Herpesvirus-1 DNA Cloned in Opposite Orientation. Journal of Applied Animal Research, 1997, 11, 183-188.	1.2	0
139	Detection of bovine herpesvirus 1 (BHV-1) genomic sequences in bovine semen inoculated with BHV-1 by polymerase chain reaction. Acta Virologica, 1997, 41, 311-5.	0.8	7
140	Cloning and characterization of HindIII fragments of bovine herpesvirus-1 DNA from an Indian isolate. Indian Journal of Biochemistry and Biophysics, 1996, 33, 315-8.	0.0	0
141	Confirmation of rinderpest from samples of affected gums. Tropical Animal Health and Production, 1977, 9, 232-232.	1.4	3
142	Role of BoLA-DRB3 genetic diversity against resistance to mastitis in cattle: Review. , 0, , 30-36.		2