Andres Jaramillo-Botero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8542790/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Performance of electrochemical immunoassays for clinical diagnostics of SARS-CoV-2 based on selective nucleocapsid N protein detection: Boron-doped diamond, gold and glassy carbon evaluation. Biosensors and Bioelectronics, 2022, 209, 114222.	10.1	23
2	Electrochemical modified electrode with bismuth film for ultrasensitive determination of aluminum (iii). Journal of Electroanalytical Chemistry, 2022, 919, 116552.	3.8	6
3	Coarse-grained force-field for large scale molecular dynamics simulations of polyacrylamide and polyacrylamide-gels based on quantum mechanics. Physical Chemistry Chemical Physics, 2021, 23, 10909-10918.	2.8	3
4	Understanding Hypervelocity Sampling of Biosignatures in Space Missions. Astrobiology, 2021, 21, 421-442.	3.0	31
5	Four-terminal graphene nanoribbon sensor devices: In-silico design and characterization. Computational Materials Science, 2021, 196, 110506.	3.0	0
6	Interfacial Interactions in a Model Composite Material: Insights into α → β Phase Transition of the Magnetite Reinforced Poly(Vinylidene Fluoride) Systems by All-Atom Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2021, 125, 21635-21644.	3.1	11
7	Review—Bio-Nanosensors: Fundamentals and Recent Applications. Journal of the Electrochemical Society, 2021, 168, 107506.	2.9	14
8	Understanding the Origin of Enhanced Piezoelectric Response in PVDF Matrices with Embedded ZnO Nanoparticles, from Polarizable Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2021, 61, 4537-4543.	5.4	7
9	ZnO/PDMS nanocomposite generator: Interphase influence in the nanocomposite electro-mechanical properties and output voltage. Energy Reports, 2021, 7, 896-903.	5.1	10
10	SenSARS: A Low-Cost Portable Electrochemical System for Ultra-Sensitive, Near Real-Time, Diagnostics of SARS-CoV-2 Infections. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-10.	4.7	15
11	A novel NIR-image segmentation method for the precise estimation of above-ground biomass in rice crops. PLoS ONE, 2020, 15, e0239591.	2.5	13
12	Estimation of Nitrogen in Rice Crops from UAV-Captured Images. Remote Sensing, 2020, 12, 3396.	4.0	23
13	Effect of surface oxidation on the electronic transport properties of phosphorene gas sensors: a computational study. RSC Advances, 2020, 10, 6893-6899.	3.6	8
14	First principles-based multiscale atomistic methods for input into first principles nonequilibrium transport across interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18193-18201.	7.1	7
15	Partially-oxidized phosphorene sensor for the detection of sub-nano molar concentrations of nitric oxide: a first-principles study. Physical Chemistry Chemical Physics, 2019, 21, 19083-19091.	2.8	6
16	Ligand-Modified Boron-Doped Diamond Surface: DFT Insights into the Electronic Properties of Biofunctionalization. Materials, 2019, 12, 2910.	2.9	4
17	All-Armchair Graphene Nanoribbon Field-Effect Uridine Diphosphate Glucose Sensor: First-Principles In-Silico Design and Characterization. IEEE Sensors Journal, 2019, 19, 3975-3983.	4.7	14
18	Predicted detonation properties at the Chapman–Jouguet state for proposed energetic materials (MTO) Tj ETÇ	9q0 0 0 rgE 2.8	3T /Overlock 21

Chemical Physics, 2018, 20, 3953-3969.

#	Article	IF	CITATIONS
19	Thermodynamic Simulation of the RDX–Aluminum Interface Using ReaxFF Molecular Dynamics. Journal of Physical Chemistry C, 2017, 121, 14597-14610.	3.1	46
20	Reactive Molecular Dynamics Simulations to Understand Mechanical Response of Thaumasite under Temperature and Strain Rate Effects. Journal of Physical Chemistry A, 2017, 121, 4688-4697.	2.5	10
21	A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond. Scientific Reports, 2017, 7, 15707.	3.3	107
22	The Mass Analyzer for Real-time Investigation of Neutrals at Europa (MARINE). , 2015, , .		3
23	Reaction Pathways of GaN (0001) Growth from Trimethylgallium and Ammonia versus Triethylgallium and Hydrazine Using First Principle Calculations. Journal of Physical Chemistry C, 2015, 119, 4095-4103.	3.1	24
24	The atomistic origin of the extraordinary oxygen reduction activity of Pt ₃ Ni ₇ fuel cell catalysts. Chemical Science, 2015, 6, 3915-3925.	7.4	53
25	Non-adiabatic dynamics modeling framework for materials in extreme conditions. Mechanics of Materials, 2015, 90, 243-252.	3.2	10
26	Ultraviolet surface plasmon-mediated low temperature hydrazine decomposition. Applied Physics Letters, 2015, 106, .	3.3	11
27	General Multiobjective Force Field Optimization Framework, with Application to Reactive Force Fields for Silicon Carbide. Journal of Chemical Theory and Computation, 2014, 10, 1426-1439.	5.3	107
28	CCl Radicals As a Carbon Source for Diamond Thin Film Deposition. Journal of Physical Chemistry Letters, 2014, 5, 481-484.	4.6	5
29	Adaptive Accelerated ReaxFF Reactive Dynamics with Validation from Simulating Hydrogen Combustion. Journal of the American Chemical Society, 2014, 136, 9434-9442.	13.7	53
30	Large-scale Molecular Simulations of Hypervelocity Impact of Materials. Procedia Engineering, 2013, 58, 167-176.	1.2	9
31	Highly Shocked Polymer Bonded Explosives at a Nonplanar Interface: Hot-Spot Formation Leading to Detonation. Journal of Physical Chemistry C, 2013, 117, 26551-26561.	3.1	83
32	Hypervelocity Impact Effect of Molecules from Enceladus' Plume and Titan's Upper Atmosphere on NASA's Cassini Spectrometer from Reactive Dynamics Simulation. Physical Review Letters, 2012, 109, 213201.	7.8	23
33	Multiscale, Multiparadigm Modeling for Nanosystems Characterization and Design. The Electrical Engineering Handbook, 2012, , 935-982.	0.2	0
34	Nonadiabatic Study of Dynamic Electronic Effects during Brittle Fracture of Silicon. Physical Review Letters, 2012, 108, 045501.	7.8	28
35	Development of a ReaxFF Reactive Force Field for Ettringite and Study of its Mechanical Failure Modes from Reactive Dynamics Simulations. Journal of Physical Chemistry A, 2012, 116, 3918-3925.	2.5	79
36	Electron dynamics of shocked polyethylene crystal. Physical Review B, 2012, 85, .	3.2	13

#	Article	IF	CITATIONS
37	Predicted Optimum Composition for the Glass-Forming Ability of Bulk Amorphous Alloys: Application to Cu–Zr–Al. Journal of Physical Chemistry Letters, 2012, 3, 3143-3148.	4.6	33
38	First-Principles-Based Multiscale, Multiparadigm Molecular Mechanics and Dynamics Methods for Describing Complex Chemical Processes. Topics in Current Chemistry, 2011, 307, 1-42.	4.0	9
39	Elucidation of the dynamics for hot-spot initiation at nonuniform interfaces of highly shocked materials. Physical Review B, 2011, 84, .	3.2	85
40	Largeâ€scale, longâ€ŧerm nonadiabatic electron molecular dynamics for describing material properties and phenomena in extreme environments. Journal of Computational Chemistry, 2011, 32, 497-512.	3.3	43
41	First-Principles Based Approaches to Nano-Mechanical and Biomimetic Characterization of Polymer-Based Hydrogel Networks for Cartilage Scaffold-Supported Therapies. Journal of Computational and Theoretical Nanoscience, 2010, 7, 1238-1256.	0.4	15
42	ROBOMOSP. IEEE Robotics and Automation Magazine, 2006, 13, 62-73.	2.0	18
43	A Unified Formulation for Massively Parallel Rigid Multibody Dynamics of O(log2n) Computational Complexity. Journal of Parallel and Distributed Computing, 2002, 62, 1001-1020.	4.1	7
44	Novel algorithms for massively parallel, long-term, simulation of molecular dynamics systems. Advances in Engineering Software, 1998, 29, 441-450.	3.8	10
45	A Fast Algorithm for Massively Parallel, Long-Term, Simulation of Complex Molecular Dynamics Systems. Advances in Parallel Computing, 1998, , 505-515.	0.3	1