
Jacky G Goetz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8542170/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Core-shell iron oxide@stellate mesoporous silica for combined near-infrared photothermia and drug delivery: Influence of pH and surface chemistry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640, 128407.	2.3	11
2	Circulating tumor cells: Towards mechanical phenotyping of metastasis. IScience, 2022, 25, 103969.	1.9	18
3	Optimal Physicochemical Properties of Antibody–Nanoparticle Conjugates for Improved Tumor Targeting. Advanced Materials, 2022, 34, e2110305.	11.1	21
4	Circulating extracellular vesicles and tumor cells: sticky partners in metastasis. Trends in Cancer, 2022, 8, 799-805.	3.8	16
5	Liquid Biopsies: Flowing Biomarkers. Advances in Experimental Medicine and Biology, 2022, , 341-368.	0.8	1
6	Tracking Mechanisms of Viral Dissemination In Vivo. Trends in Cell Biology, 2021, 31, 17-23.	3.6	8
7	Mechanical Adaptability of Tumor Cells in Metastasis. Developmental Cell, 2021, 56, 164-179.	3.1	94
8	Nanoluminal Signaling Shapes Collective Metastasis. Trends in Cancer, 2021, 7, 9-11.	3.8	1
9	Drugâ€5ponge Lipid Nanocarrier for in Situ Cargo Loading and Release Using Dynamic Covalent Chemistry. Angewandte Chemie, 2021, 133, 6647-6654.	1.6	2
10	Drugâ€ S ponge Lipid Nanocarrier for in Situ Cargo Loading and Release Using Dynamic Covalent Chemistry. Angewandte Chemie - International Edition, 2021, 60, 6573-6580.	7.2	11
11	Probing Intravascular Adhesion and Extravasation of Tumor Cells with Microfluidics. Methods in Molecular Biology, 2021, 2294, 111-132.	0.4	4
12	The NANOTUMOR consortium – Towards the Tumor Cell Atlas. Biology of the Cell, 2021, 113, 272-280.	0.7	1
13	Impairing flow-mediated endothelial remodeling reduces extravasation of tumor cells. Scientific Reports, 2021, 11, 13144.	1.6	12
14	Fluorescent nanocarriers targeting VCAM-1 for early detection of senescent endothelial cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 34, 102379.	1.7	12
15	Tumor extracellular vesicles drive metastasis (it's a long way from home). FASEB BioAdvances, 2021, 3, 930-943.	1.3	19
16	The power of imaging to understand extracellular vesicle biology in vivo. Nature Methods, 2021, 18, 1013-1026.	9.0	163
17	Intravital imaging technology guides FAK-mediated priming in pancreatic cancer precision medicine according to Merlin status. Science Advances, 2021, 7, eabh0363.	4.7	23
18	Ral GTPases promote breast cancer metastasis by controlling biogenesis and organ targeting of exosomes. ELife, 2021, 10, .	2.8	70

#	Article	IF	CITATIONS
19	Biomechanics: a driving force behind metastatic progression. Comptes Rendus - Biologies, 2021, 344, 249-262.	0.1	1
20	Nanocomposite Polymer Scaffolds Responding under External Stimuli for Drug Delivery and Tissue Engineering Applications. Advanced Therapeutics, 2020, 3, 1900143.	1.6	28
21	Fluids and their mechanics in tumour transit: shaping metastasis. Nature Reviews Cancer, 2020, 20, 107-124.	12.8	232
22	Near infra-red light responsive carbon nanotubes@mesoporous silica for photothermia and drug delivery to cancer cells. Materials Today Chemistry, 2020, 17, 100308.	1.7	23
23	Visualizing Cancer. Cancer Cell, 2020, 38, 753-756.	7.7	4
24	Live tracking of extracellular vesicles in larval zebrafish. Methods in Enzymology, 2020, 645, 243-275.	0.4	5
25	Leveraging Immunotherapy with Nanomedicine. Advanced Therapeutics, 2020, 3, 2000134.	1.6	2
26	Extracellular Vesicles: Catching the Light in Zebrafish. Trends in Cell Biology, 2019, 29, 770-776.	3.6	38
27	The Complexities of Metastasis. Cancers, 2019, 11, 1575.	1.7	28
28	Membrane Tension Orchestrates Rear Retraction in Matrix-Directed Cell Migration. Developmental Cell, 2019, 51, 460-475.e10.	3.1	112
29	Multiscale Imaging of Metastasis in Zebrafish. Trends in Cancer, 2019, 5, 766-778.	3.8	36
30	Metastatic Tumor Cells Exploit Their Adhesion Repertoire to Counteract Shear Forces during Intravascular Arrest. Cell Reports, 2019, 28, 2491-2500.e5.	2.9	72
31	Zika virus enhances monocyte adhesion and transmigration favoring viral dissemination to neural cells. Nature Communications, 2019, 10, 4430.	5.8	83
32	Live Tracking of Inter-organ Communication by Endogenous Exosomes InÂVivo. Developmental Cell, 2019, 48, 573-589.e4.	3.1	231
33	Studying the Fate of Tumor Extracellular Vesicles at High Spatiotemporal Resolution Using the Zebrafish Embryo. Developmental Cell, 2019, 48, 554-572.e7.	3.1	160
34	Wrapped stellate silica nanocomposites as biocompatible luminescent nanoplatforms assessed in vivo. Journal of Colloid and Interface Science, 2019, 542, 469-482.	5.0	18
35	Hemodynamic Forces Tune the Arrest, Adhesion, and Extravasation of Circulating Tumor Cells. Developmental Cell, 2018, 45, 33-52.e12.	3.1	219
36	An Arf6- and caveolae-dependent pathway links hemidesmosome remodeling and mechanoresponse. Molecular Biology of the Cell, 2018, 29, 435-451.	0.9	18

#	Article	IF	CITATIONS
37	Synergistic Mechano-Chemical Sensing by Vascular Cilia. Trends in Cell Biology, 2018, 28, 507-508.	3.6	2
38	Using the Zebrafish Embryo to Dissect the Early Steps of the Metastasis Cascade. Methods in Molecular Biology, 2018, 1749, 195-211.	0.4	12
39	The Small GTPase Ral orchestrates MVB biogenesis and exosome secretion. Small GTPases, 2018, 9, 445-451.	0.7	43
40	CD44 Orchestrates Metastatic Teamwork. Developmental Cell, 2018, 47, 691-693.	3.1	9
41	Metastases go with the flow. Science, 2018, 362, 999-1000.	6.0	17
42	Combining laser capture microdissection and proteomics reveals an active translation machinery controlling invadosome formation. Nature Communications, 2018, 9, 2031.	5.8	43
43	Exploiting Anatomical Landmarks for Efficient In Vivo CLEM. Trends in Biochemical Sciences, 2018, 43, 744-747.	3.7	3
44	Laminin α1 orchestrates VEGFA functions in the ecosystem of colorectal carcinoma. Biology of the Cell, 2018, 110, 178-195.	0.7	16
45	Going live with tumor exosomes and microvesicles. Cell Adhesion and Migration, 2017, 11, 173-186.	1.1	31
46	Extracellular vesicles on the wire. Cell Adhesion and Migration, 2017, 11, 121-123.	1.1	2
47	Find your way with X-Ray. Methods in Cell Biology, 2017, 140, 277-301.	0.5	42
48	Fluorescent Polymer Nanoparticles for Cell Barcoding In Vitro and In Vivo. Small, 2017, 13, 1701582.	5.2	95
49	Hemodynamic forces can be accurately measured in vivo with optical tweezers. Molecular Biology of the Cell, 2017, 28, 3252-3260.	0.9	29
50	Mutations in signal recognition particle SRP54 cause syndromic neutropenia with Shwachman-Diamond–like features. Journal of Clinical Investigation, 2017, 127, 4090-4103.	3.9	126
51	Fast and precise targeting of single tumor cells <i>in vivo</i> by multimodal correlative microscopy. Journal of Cell Science, 2016, 129, 444-56.	1.2	97
52	Imaging Single Tumor Cells in Mice Using Multimodal Correlative Microscopy. Microscopy and Microanalysis, 2016, 22, 30-31.	0.2	1
53	The microenvironment controls invadosome plasticity. Journal of Cell Science, 2016, 129, 1759-68.	1.2	53
54	<i>In vivo</i> imaging of skeletal muscle in mice highlights muscle defects in a model of myotubular myopathy. Intravital, 2016, 5, e1168553.	2.0	13

#	Article	IF	CITATIONS
55	Intravital Correlative Microscopy: Imaging Life at the Nanoscale. Trends in Cell Biology, 2016, 26, 848-863.	3.6	86
56	Seeing is believing: multi-scale spatio-temporal imaging towards <i>in vivo</i> cell biology. Journal of Cell Science, 2016, 130, 23-38.	1.2	52
57	Integrity of lipid nanocarriers in bloodstream and tumor quantified by near-infrared ratiometric FRET imaging in living mice. Journal of Controlled Release, 2016, 236, 57-67.	4.8	87
58	Generating and characterizing the mechanical properties of cell-derived matrices using atomic force microscopy. Methods, 2016, 94, 85-100.	1.9	21
59	Inhibition of PlexA1-mediated brain tumor growth and tumor-associated angiogenesis using a transmembrane domain targeting peptide. Oncotarget, 2016, 7, 57851-57865.	0.8	30
60	Fibrillar cellular fibronectin supports efficient platelet aggregation and procoagulant activity. Thrombosis and Haemostasis, 2015, 114, 1175-1188.	1.8	34
61	Multicellular cuddling in a stem cell niche. Cell Adhesion and Migration, 2015, 9, 280-282.	1.1	0
62	A quantitative approach to study endothelial cilia bending stiffness during blood flow mechanodetection in vivo. Methods in Cell Biology, 2015, 127, 161-173.	0.5	5
63	RAL-1 controls multivesicular body biogenesis and exosome secretion. Journal of Cell Biology, 2015, 211, 27-37.	2.3	193
64	Foreword: Physics of cell migration. Cell Adhesion and Migration, 2015, 9, 325-326.	1.1	2
65	Metastasis of circulating tumor cells: Favorable soil or suitable biomechanics, or both?. Cell Adhesion and Migration, 2015, 9, 345-356.	1.1	93
66	Using Correlative Light and Electron Microscopy to Study Zebrafish Vascular Morphogenesis. Methods in Molecular Biology, 2015, 1189, 31-46.	0.4	15
67	Correlating Intravital Multi-Photon Microscopy to 3D Electron Microscopy of Invading Tumor Cells Using Anatomical Reference Points. PLoS ONE, 2014, 9, e114448.	1.1	46
68	Endothelial Cilia Mediate Low Flow Sensing during Zebrafish Vascular Development. Cell Reports, 2014, 6, 799-808.	2.9	180
69	Fluid flows and forces in development: functions, features and biophysical principles. Development (Cambridge), 2012, 139, 3063-3063.	1.2	6
70	Fluid flows and forces in development: functions, features and biophysical principles. Development (Cambridge), 2012, 139, 1229-1245.	1.2	121
71	Tumor microenvironment indoctrination. Cell Adhesion and Migration, 2012, 6, 190-192.	1.1	7
72	Biomechanical Remodeling of the Microenvironment by Stromal Caveolin-1 Favors Tumor Invasion and Metastasis. Cell, 2011, 146, 148-163.	13.5	603

#	Article	IF	CITATIONS
73	Bidirectional control of the inner dynamics of focal adhesions promotes cell migration. Cell Adhesion and Migration, 2009, 3, 185-190.	1.1	26
74	Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. Journal of Cell Biology, 2009, 185, 381-385.	2.3	305
75	The Absence of Caveolin-1 Increases Proliferation and Anchorage- Independent Growth by a Rac-Dependent, Erk-Independent Mechanism. Molecular and Cellular Biology, 2009, 29, 5046-5059.	1.1	72
76	Caveolin-1 in tumor progression: the good, the bad and the ugly. Cancer and Metastasis Reviews, 2008, 27, 715-735.	2.7	263
77	Concerted regulation of focal adhesion dynamics by galectin-3 and tyrosine-phosphorylated caveolin-1. Journal of Cell Biology, 2008, 180, 1261-1275.	2.3	171
78	Phosphorylated Caveolin-1 Regulates Rho/ROCK-Dependent Focal Adhesion Dynamics and Tumor Cell Migration and Invasion. Cancer Research, 2008, 68, 8210-8220.	0.4	228
79	Reversible interactions between smooth domains of the endoplasmic reticulum and mitochondria are regulated by physiological cytosolic Ca2+ levels. Journal of Cell Science, 2007, 120, 3553-3564.	1.2	64
80	Plasma membrane domain organization regulates EGFR signaling in tumor cells. Journal of Cell Biology, 2007, 179, 341-356.	2.3	231
81	Galectin Binding to Mgat5-Modified N-Glycans Regulates Fibronectin Matrix Remodeling in Tumor Cells. Molecular and Cellular Biology, 2006, 26, 3181-3193.	1.1	185
82	Interaction of the smooth endoplasmic reticulum and mitochondria. Biochemical Society Transactions, 2006, 34, 370-373.	1.6	50
83	pH-specific sequestration of phosphoglucose isomerase/autocrine motility factor by fibronectin and heparan sulphate. Journal of Cell Science, 2005, 118, 4175-4185.	1.2	6
84	The gene product of the gp78/AMFR ubiquitin E3 ligase cDNA is selectively recognized by the 3F3A antibody within a subdomain of the endoplasmic reticulum. Biochemical and Biophysical Research Communications, 2004, 320, 1316-1322.	1.0	22

6