
Teresa Roldan-Arjona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8541962/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ROS1, a Repressor of Transcriptional Gene Silencing in Arabidopsis, Encodes a DNA Glycosylase/Lyase. Cell, 2002, 111, 803-814.	28.9	653
2	Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 8016-8020.	7.1	354
3	DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6853-6858.	7.1	306
4	Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 109-114.	7.1	266
5	Arabidopsis DEMETER-LIKE proteins DML2 and DML3 are required for appropriate distribution of DNA methylation marks. Plant Molecular Biology, 2008, 67, 671-681.	3.9	241
6	Repair and tolerance of oxidative DNA damage in plants. Mutation Research - Reviews in Mutation Research, 2009, 681, 169-179.	5.5	195
7	Promoter DNA Hypermethylation and Gene Repression in Undifferentiated Arabidopsis Cells. PLoS ONE, 2008, 3, e3306.	2.5	99
8	Excision of Products of Oxidative DNA Base Damage by Human NTH1 Protein. Biochemistry, 1999, 38, 243-246.	2.5	97
9	Tomatinase from Fusarium oxysporum f. sp. lycopersici Defines a New Class of Saponinases. Molecular Plant-Microbe Interactions, 1999, 12, 852-861.	2.6	83
10	A DNA 3′ Phosphatase Functions in Active DNA Demethylation in Arabidopsis. Molecular Cell, 2012, 45, 357-370.	9.7	81
11	Molecular cloning and functional analysis of a Schizosaccharomyces pombe homologue of Escherichia coli endonuclease III. Nucleic Acids Research, 1996, 24, 3307-3312.	14.5	71
12	An OGG1 orthologue encoding a functional 8-oxoguanine DNA glycosylase/lyase in Arabidopsis thaliana. Plant Molecular Biology, 2001, 47, 795-804.	3.9	68
13	Guanine is the target for direct ionisation damage in DNA, as detected using excision enzymes. Nucleic Acids Research, 1998, 26, 4935-4942.	14.5	59
14	DNA Base Excision Repair in Plants: An Unfolding Story With Familiar and Novel Characters. Frontiers in Plant Science, 2019, 10, 1055.	3.6	54
15	An AP Endonuclease Functions in Active DNA Demethylation and Gene Imprinting in Arabidopsis. PLoS Genetics, 2015, 11, e1004905.	3.5	53
16	Arabidopsis <scp>ZDP DNA</scp> 3′â€phosphatase and <scp>ARP</scp> endonuclease function in 8â€oxoG repair initiated by <scp>FPG</scp> and <scp>OGG</scp> 1 <scp>DNA</scp> glycosylases. Plant Journal, 2014, 79, 824-834.	5.7	51
17	Singleâ€nucleotide and longâ€patch base excision repair of DNA damage in plants. Plant Journal, 2009, 60, 716-728.	5.7	48
18	Substrate Specificity ofSchizosaccharomyces pombeNth Protein for Products of Oxidative DNA Damage. Biochemistry, 1998, 37, 590-595.	2.5	46

Teresa Roldan-Arjona

#	Article	IF	CITATIONS
19	Active DNA Demethylation in Plants. International Journal of Molecular Sciences, 2019, 20, 4683.	4.1	44
20	Arabidopsis thaliana AtPOLKencodes a DinB-like DNA polymerase that extends mispaired primer termini and is highly expressed in a variety of tissues. Plant Journal, 2004, 39, 84-97.	5.7	43
21	ROS1 5-methylcytosine DNA glycosylase is a slow-turnover catalyst that initiates DNA demethylation in a distributive fashion. Nucleic Acids Research, 2009, 37, 4264-4274.	14.5	42
22	Arabidopsis ARP endonuclease functions in a branched base excision DNA repair pathway completed by LIG1. Plant Journal, 2011, 68, 693-702.	5.7	42
23	Arabidopsis Uracil DNA Glycosylase (UNG) Is Required for Base Excision Repair of Uracil and Increases Plant Sensitivity to 5-Fluorouracil. Journal of Biological Chemistry, 2010, 285, 7475-7483.	3.4	40
24	DNA Methylation Editing by CRISPR-guided Excision of 5-Methylcytosine. Journal of Molecular Biology, 2020, 432, 2204-2216.	4.2	40
25	Arabidopsis thalianaOgg1 Protein Excises 8-Hydroxyguanine and 2,6-Diamino-4-hydroxy-5-formamidopyrimidine from Oxidatively Damaged DNA Containing Multiple Lesions. Biochemistry, 2003, 42, 3089-3095.	2.5	38
26	Irradiation of DNA with 193 nm Light Yields Formamidopyrimidineâ€DNA Glycosylase (Fpg) Protein‣ensitive Lesions. Photochemistry and Photobiology, 1997, 65, 660-665.	2.5	37
27	Methylation-independent DNA Binding Modulates Specificity of Repressor of Silencing 1 (ROS1) and Facilitates Demethylation in Long Substrates. Journal of Biological Chemistry, 2010, 285, 23032-23039.	3.4	37
28	cDNA cloning, expression and functional characterization of an Arabidopsis thaliana homologue of the Escherichia coli DNA repair enzyme endonuclease III. Plant Molecular Biology, 2000, 44, 43-52.	3.9	36
29	Mutagenesis and DNA repair for alkylation damages in <i>Escherichia coli</i> kâ€12. Environmental and Molecular Mutagenesis, 1992, 19, 288-296.	2.2	32
30	The DNA Repair Protein XRCC1 Functions in the Plant DNA Demethylation Pathway by Stimulating Cytosine Methylation (5-meC) Excision, Gap Tailoring, and DNA Ligation*. Journal of Biological Chemistry, 2013, 288, 5496-5505.	3.4	32
31	A method for selection of forward mutations in supF gene carried by shuttle-vector plasmids. Carcinogenesis, 1993, 14, 303-305.	2.8	28
32	An association between mutagenicity of the Ara test of Salmonella typhimurium and carcinogenicity in rodents for 16 halogenated aliphatic hydrocarbons. Mutagenesis, 1991, 6, 199-205.	2.6	27
33	The photolyase gene from the plant pathogen Fusarium oxysporum f. sp. lycopersici is induced by visible light and I±-tomatine from tomato plant. Fungal Genetics and Biology, 2003, 40, 159-165.	2.1	26
34	A discontinuous DNA glycosylase domain in a family of enzymes that excise 5-methylcytosine. Nucleic Acids Research, 2011, 39, 1473-1484.	14.5	26
35	Homologous Recombination Is Stimulated by a Decrease in dUTPase in Arabidopsis. PLoS ONE, 2011, 6, e18658.	2.5	24
36	Demethylation initiated by ROS1 glycosylase involves random sliding along DNA. Nucleic Acids Research, 2012, 40, 11554-11562.	14.5	23

TERESA ROLDAN-ARJONA

#	Article	IF	CITATIONS
37	Targeted DNA demethylation in human cells by fusion of a plant 5-methylcytosine DNA glycosylase to a sequence-specific DNA binding domain. Epigenetics, 2017, 12, 296-303.	2.7	19
38	Molecular characterization of a putative plant homolog of MBD4 DNA glycosylase. DNA Repair, 2013, 12, 890-898.	2.8	16
39	The noncatalytic C-terminus of AtPOLK Y-family DNA polymerase affects synthesis fidelity, mismatch extension and translesion replication. FEBS Journal, 2007, 274, 3340-3350.	4.7	15
40	Early steps of active DNA demethylation initiated by ROS1 glycosylase require three putative helix-invading residues. Nucleic Acids Research, 2013, 41, 8654-8664.	14.5	15
41	Nonenzymatic release of N7-methylguanine channels repair of abasic sites into an AP endonuclease-independent pathway in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E916-E924.	7.1	15
42	Mutagenic and lethal effects of halogenated methanes in the Ara test of Salmonella typhimurium: quantitative relationship with chemical reactivity. Mutagenesis, 1993, 8, 127-131.	2.6	14
43	Influence of DNA repair byada andogt alkytransferases on the mutational specificity of alkylating agents. Molecular Carcinogenesis, 1994, 9, 200-209.	2.7	14
44	DNA base damage induced by ionizing radiation recognized byEscherichia coli UvrABC nuclease but not Nth or Fpg proteins. , 1996, 16, 188-196.		14
45	Metabolism of the tomato saponin α-tomatine by phytopathogenic fungi. Studies in Natural Products Chemistry, 2001, , 293-326.	1.8	11
46	Dual control of ROS1â€mediated active DNA demethylation by DNA damageâ€binding protein 2 (DDB2). Plant Journal, 2017, 92, 1170-1181.	5.7	10
47	Quantitative relationship between mutagenic potency in the Ara test of Salmonella typhimurium and carcinogenic potency in rodents. A study of 11 direct-acting monofunctional alkylating agents. Carcinogenesis, 1990, 11, 975-980.	2.8	9
48	Pantothenate synthetase from Fusarium oxysporum f. sp. lycopersici is induced by α-tomatine. Molecular Genetics and Genomics, 2001, 265, 922-929.	2.1	8
49	DNA methylation reprogramming of human cancer cells by expression of a plant 5-methylcytosine DNA glycosylase. Epigenetics, 2018, 13, 95-107.	2.7	8
50	Monitoring base excision repair in Chlamydomonas reinhardtii cell extracts. DNA Repair, 2018, 65, 34-41.	2.8	6
51	Mathematical parameters for quantification of mutational responses in bacteria. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1995, 346, 77-84.	1.1	4
52	Using Arabidopsis Cell Extracts to Monitor Repair of DNA Base Damage In Vitro. Methods in Molecular Biology, 2012, 920, 263-277.	0.9	4
53	Characterization of an AP endonuclease from sugarcane – ScARP1. Biochemical and Biophysical Research Communications, 2019, 514, 926-932.	2.1	4
54	A Chemiluminescent Method for the Detection of DNA Glycosylase/Lyase Activity. Analytical Biochemistry, 2001, 298, 127-129.	2.4	3

#	Article	IF	CITATIONS
55	Simple method for precise determination of chemical lethality in the l-arabinose resistance test of Salmonella typhimurium. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1989, 226, 175-180.	1.1	2
56	Complementary Functions of Plant AP Endonucleases and AP Lyases during DNA Repair of Abasic Sites Arising from C:G Base Pairs. International Journal of Molecular Sciences, 2021, 22, 8763.	4.1	2
57	Influence of S9 mix on the expression of mutants in the l-arabinose resistance test of Salmonella typhimurium. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1990, 243, 303-308.	1.1	1
58	Chapter 18. Base Excision Repair in Plants: Variations on a Theme. Chemical Biology, 2020, , 48-74.	0.2	1
59	Assignment of the CD47 gene to pig chromosome band 13q42→1/2q46 with somatic cell hybrids. Cytogenetic and Genome Research, 2002, 97, 276E-276E.	1.1	0
60	Editorial: Plant Genome-Epigenome Integrity Under Environmental Stress. Frontiers in Plant Science, 2020, 11, 584126.	3.6	0
61	Abstract P4-10-28: Identification of a specific epigenetic signature in patients showing secondary hypertension upon anti-VEGF treatment from the GEICAM/2011-04 (BRECOL) study. , 2020, , .		Ο