List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8541447/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioconjugated quantum dots for in vivo molecular and cellular imagingâ~†. Advanced Drug Delivery Reviews, 2008, 60, 1226-1240.	6.6	1,067
2	Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nature Biotechnology, 2017, 35, 1102-1110.	9.4	753
3	High-Performance Asymmetric Supercapacitor Based on Graphene Hydrogel and Nanostructured MnO ₂ . ACS Applied Materials & Interfaces, 2012, 4, 2801-2810.	4.0	681
4	Mussel-Inspired Synthesis of Polydopamine-Functionalized Graphene Hydrogel as Reusable Adsorbents for Water Purification. ACS Applied Materials & Interfaces, 2013, 5, 425-432.	4.0	633
5	Cell-Penetrating Quantum Dots Based on Multivalent and Endosome-Disrupting Surface Coatings. Journal of the American Chemical Society, 2007, 129, 3333-3338.	6.6	440
6	Directing Self-Assembly of Nanoparticles at Water/Oil Interfaces. Angewandte Chemie - International Edition, 2004, 43, 5639-5642.	7.2	418
7	A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Physical Chemistry Chemical Physics, 2006, 8, 3895.	1.3	413
8	Self-Assembled Plasmonic Vesicles of SERS-Encoded Amphiphilic Gold Nanoparticles for Cancer Cell Targeting and Traceable Intracellular Drug Delivery. Journal of the American Chemical Society, 2012, 134, 13458-13469.	6.6	407
9	Etching Colloidal Gold Nanocrystals with Hyperbranched and Multivalent Polymers:Â A New Route to Fluorescent and Water-Soluble Atomic Clusters. Journal of the American Chemical Society, 2007, 129, 2412-2413.	6.6	380
10	One-Step Electrochemical Synthesis of PtNi Nanoparticle-Graphene Nanocomposites for Nonenzymatic Amperometric Glucose Detection. ACS Applied Materials & Interfaces, 2011, 3, 3049-3057.	4.0	357
11	Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. Biomaterials, 2011, 32, 9758-9765.	5.7	320
12	Single Chain Epidermal Growth Factor Receptor Antibody Conjugated Nanoparticles for in vivo Tumor Targeting and Imaging. Small, 2009, 5, 235-243.	5.2	315
13	Compact Plasmonic Blackbody for Cancer Theranosis in the Near-Infrared II Window. ACS Nano, 2018, 12, 2643-2651.	7.3	294
14	Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nature Communications, 2020, 11, 1857.	5.8	294
15	Magnetic Colloidosomes Derived from Nanoparticle Interfacial Self-Assembly. Nano Letters, 2005, 5, 949-952.	4.5	264
16	Flexible All-Solid-State Asymmetric Supercapacitors Based on Free-Standing Carbon Nanotube/Graphene and Mn ₃ O ₄ Nanoparticle/Graphene Paper Electrodes. ACS Applied Materials & Interfaces, 2012, 4, 7020-7026.	4.0	256
17	Growth of Metal–Metal Oxide Nanostructures on Freestanding Graphene Paper for Flexible Biosensors. Advanced Functional Materials, 2012, 22, 2487-2494.	7.8	246
18	Plasmonic Vesicles of Amphiphilic Gold Nanocrystals: Self-Assembly and External-Stimuli-Triggered Destruction. Journal of the American Chemical Society, 2011, 133, 10760-10763.	6.6	245

#	Article	IF	CITATIONS
19	Reexamining the Effects of Particle Size and Surface Chemistry on the Magnetic Properties of Iron Oxide Nanocrystals: New Insights into Spin Disorder and Proton Relaxivity. Journal of Physical Chemistry C, 2008, 112, 8127-8131.	1.5	233
20	Cationic Peptidopolysaccharides Show Excellent Broadâ€Spectrum Antimicrobial Activities and High Selectivity. Advanced Materials, 2012, 24, 4130-4137.	11.1	226
21	Versatile Core–Shell Nanoparticle@Metal–Organic Framework Nanohybrids: Exploiting Mussel-Inspired Polydopamine for Tailored Structural Integration. ACS Nano, 2015, 9, 6951-6960.	7.3	223
22	Coating Graphene Paper with 2D-Assembly of Electrocatalytic Nanoparticles: A Modular Approach toward High-Performance Flexible Electrodes. ACS Nano, 2012, 6, 100-110.	7.3	203
23	Interfacial Assembly of Musselâ€Inspired Au@Ag@ Polydopamine Core–Shell Nanoparticles for Recyclable Nanocatalysts. Advanced Materials, 2014, 26, 701-705.	11.1	196
24	Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene–carbon nanotube hybrid paper electrode. Biosensors and Bioelectronics, 2015, 68, 358-364.	5.3	195
25	2D nanomaterials based electrochemical biosensors for cancer diagnosis. Biosensors and Bioelectronics, 2017, 89, 136-151.	5.3	191
26	The water/oil interface: the emerging horizon for self-assembly of nanoparticles. Soft Matter, 2005, 1, 412.	1.2	180
27	Biodegradable Theranostic Plasmonic Vesicles of Amphiphilic Gold Nanorods. ACS Nano, 2013, 7, 9947-9960.	7.3	176
28	Construction of Metal–Organic Framework/Conductive Polymer Hybrid for All-Solid-State Fabric Supercapacitor. ACS Applied Materials & Interfaces, 2018, 10, 18021-18028.	4.0	176
29	SERS-Encoded Nanogapped Plasmonic Nanoparticles: Growth of Metallic Nanoshell by Templating Redox-Active Polymer Brushes. Journal of the American Chemical Society, 2014, 136, 6838-6841.	6.6	174
30	2D and 3D graphene materials: Preparation and bioelectrochemical applications. Biosensors and Bioelectronics, 2015, 65, 404-419.	5.3	172
31	A corrosion-protective coating based on a solution-processable polymer-grafted graphene oxide nanocomposite. Corrosion Science, 2015, 98, 500-506.	3.0	168
32	SERS-Active Nanoparticles for Sensitive and Selective Detection of Cadmium Ion (Cd ²⁺). Chemistry of Materials, 2011, 23, 4756-4764.	3.2	167
33	Plasmonic Vesicles of Amphiphilic Nanocrystals: Optically Active Multifunctional Platform for Cancer Diagnosis and Therapy. Accounts of Chemical Research, 2015, 48, 2506-2515.	7.6	161
34	Gold Nanoparticles Coated with a Thermosensitive Hyperbranched Polyelectrolyte: Towards Smart Temperature and pH Nanosensors. Angewandte Chemie - International Edition, 2008, 47, 2227-2230.	7.2	155
35	Molecular Imaging of Pancreatic Cancer in an Animal Model Using Targeted Multifunctional Nanoparticles. Gastroenterology, 2009, 136, 1514-1525.e2.	0.6	152
36	Dendronized Semiconducting Polymer as Photothermal Nanocarrier for Remote Activation of Gene Expression. Angewandte Chemie - International Edition, 2017, 56, 9155-9159.	7.2	147

#	Article	IF	CITATIONS
37	Ultrasensitive Profiling of Metabolites Using Tyramine-Functionalized Graphene Quantum Dots. ACS Nano, 2016, 10, 3622-3629.	7.3	145
38	Self-Assembly of Unlike Homopolymers into Hollow Spheres in Nonselective Solvent. Journal of the American Chemical Society, 2001, 123, 12097-12098.	6.6	143
39	Growth of coral-like PtAu–MnO2 binary nanocomposites on free-standing graphene paper for flexible nonenzymatic glucose sensors. Biosensors and Bioelectronics, 2013, 41, 417-423.	5.3	142
40	Janus Nanoparticles: From Fabrication to (Bio)Applications. ACS Nano, 2021, 15, 6147-6191.	7.3	140
41	Lateral Flow Immunoassay Based on Polydopamine-Coated Gold Nanoparticles for the Sensitive Detection of Zearalenone in Maize. ACS Applied Materials & Interfaces, 2019, 11, 31283-31290.	4.0	132
42	Quantum Dots with Phenylboronic Acid Tags for Specific Labeling of Sialic Acids on Living Cells. Analytical Chemistry, 2011, 83, 1124-1130.	3.2	128
43	Cytotoxicity Evaluation of Oxidized Single-Walled Carbon Nanotubes and Graphene Oxide on Human Hepatoma HepG2 cells: An iTRAQ-Coupled 2D LC-MS/MS Proteome Analysis. Toxicological Sciences, 2012, 126, 149-161.	1.4	128
44	Nanotransducers for Nearâ€Infrared Photoregulation in Biomedicine. Advanced Materials, 2019, 31, e1901607.	11.1	125
45	Flexible 3D Nanoporous Graphene for Desalination and Bio-decontamination of Brackish Water <i>via</i> Asymmetric Capacitive Deionization. ACS Applied Materials & Interfaces, 2016, 8, 25313-25325.	4.0	123
46	Responsive Plasmonic Assemblies of Amphiphilic Nanocrystals at Oilâ^'Water Interfaces. ACS Nano, 2010, 4, 6098-6104.	7.3	120
47	Large‣cale Noniridescent Structural Color Printing Enabled by Infiltrationâ€Driven Nonequilibrium Colloidal Assembly. Advanced Materials, 2018, 30, 1705667.	11.1	117
48	Growth of Copper Nanocubes on Graphene Paper as Free-Standing Electrodes for Direct Hydrazine Fuel Cells. Journal of Physical Chemistry C, 2012, 116, 7719-7725.	1.5	114
49	Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice. Chemical Science, 2016, 7, 5118-5125.	3.7	113
50	Block Copolymer Nanoparticles Remove Biofilms of Drug-Resistant Gram-Positive Bacteria by Nanoscale Bacterial Debridement. Nano Letters, 2018, 18, 4180-4187.	4.5	113
51	Immobilizing CdS quantum dots and dendritic Pt nanocrystals on thiolated graphene nanosheets toward highly efficient photocatalytic H2 evolution. Nanoscale, 2013, 5, 9830.	2.8	110
52	Polydopamine-Enabled Approach toward Tailored Plasmonic Nanogapped Nanoparticles: From Nanogap Engineering to Multifunctionality. ACS Nano, 2016, 10, 11066-11075.	7.3	109
53	Freestanding graphene paper decorated with 2D-assembly of Au@Pt nanoparticles as flexible biosensors to monitor live cell secretion of nitric oxide. Biosensors and Bioelectronics, 2013, 49, 71-78.	5.3	108
54	Double‣ayered Plasmonic–Magnetic Vesicles by Selfâ€Assembly of Janus Amphiphilic Gold–Iron(II,III) Oxide Nanoparticles. Angewandte Chemie - International Edition, 2017, 56, 8110-8114.	7.2	107

#	Article	IF	CITATIONS
55	From structures to functions: insights into exosomes as promising drug delivery vehicles. Biomaterials Science, 2016, 4, 910-921.	2.6	105
56	High-Performance Capacitive Deionization Disinfection of Water with Graphene Oxide- <i>graft</i> -Quaternized Chitosan Nanohybrid Electrode Coating. ACS Nano, 2015, 9, 10142-57.	7.3	95
57	Magnetic nanochain integrated microfluidic biochips. Nature Communications, 2018, 9, 1743.	5.8	94
58	In Vivo Anti-Biofilm and Anti-Bacterial Non-Leachable Coating Thermally Polymerized on Cylindrical Catheter. ACS Applied Materials & Interfaces, 2017, 9, 36269-36280.	4.0	93
59	Chargeâ€Reversal Polymer Nanoâ€modulators for Photodynamic Immunotherapy of Cancer. Angewandte Chemie - International Edition, 2021, 60, 19355-19363.	7.2	90
60	Transdermal Delivery of Antiâ€Obesity Compounds to Subcutaneous Adipose Tissue with Polymeric Microneedle Patches. Small Methods, 2017, 1, 1700269.	4.6	88
61	Enantiomeric glycosylated cationic block co-beta-peptides eradicate Staphylococcus aureus biofilms and antibiotic-tolerant persisters. Nature Communications, 2019, 10, 4792.	5.8	88
62	A core/shell structured tubular graphene nanoflake-coated polypyrrole hybrid for all-solid-state flexible supercapacitors. Journal of Materials Chemistry A, 2018, 6, 3913-3918.	5.2	87
63	Nanomaterial based electrochemical sensors for in vitro detection of small molecule metabolites. Biotechnology Advances, 2016, 34, 234-249.	6.0	86
64	Block-Copolymer-Free Strategy for Preparing Micelles and Hollow Spheres:  Self-Assembly of Poly(4-vinylpyridine) and Modified Polystyrene. Macromolecules, 2002, 35, 5980-5989.	2.2	81
65	Multifunctional Magnetic Nanochains: Exploiting Self-Polymerization and Versatile Reactivity of Mussel-Inspired Polydopamine. Chemistry of Materials, 2015, 27, 3071-3076.	3.2	81
66	Directing Self-Assembly of Nanoparticles at Water/Oil Interfaces. Angewandte Chemie, 2004, 116, 5757-5760.	1.6	80
67	Photolabile plasmonic vesicles assembled from amphiphilic gold nanoparticles for remote-controlled traceable drug delivery. Nanoscale, 2013, 5, 5816-5824.	2.8	76
68	Colloidally Stable Amphibious Nanocrystals Derived from Poly{[2-(dimethylamino)ethyl] Methacrylate} Capping. Angewandte Chemie - International Edition, 2005, 44, 1717-1720.	7.2	75
69	Self-Assembled Plasmonic Dimers of Amphiphilic Gold Nanocrystals. Journal of Physical Chemistry Letters, 2011, 2, 2258-2262.	2.1	74
70	Printing graphene-carbon nanotube-ionic liquid gel on graphene paper: Towards flexible electrodes with efficient loading of PtAu alloy nanoparticles for electrochemical sensing of blood glucose. Analytica Chimica Acta, 2016, 903, 61-68.	2.6	72
71	Self-Assembly of Rigid and Coil Polymers into Hollow Spheres in Their Common Solvent. Journal of Physical Chemistry B, 2004, 108, 550-555.	1.2	68
72	One-step synthesis of three-dimensional porous ionic liquid–carbon nanotube–graphene gel and MnO ₂ –graphene gel as freestanding electrodes for asymmetric supercapacitors. RSC Advances, 2015, 5, 10178-10186.	1.7	68

#	Article	IF	CITATIONS
73	Ultrasonic-electrodeposition of PtPd alloy nanoparticles on ionic liquid-functionalized graphene paper: towards a flexible and versatile nanohybrid electrode. Nanoscale, 2016, 8, 1523-1534.	2.8	68
74	Nanoparticles of Short Cationic Peptidopolysaccharide Self-Assembled by Hydrogen Bonding with Antibacterial Effect against Multidrug-Resistant Bacteria. ACS Applied Materials & Interfaces, 2017, 9, 38288-38303.	4.0	67
75	Sandwich-structured nanohybrid paper based on controllable growth of nanostructured MnO ₂ on ionic liquid functionalized graphene paper as a flexible supercapacitor electrode. Nanoscale, 2015, 7, 7790-7801.	2.8	63
76	A Glycosylated Cationic Block Poly(βâ€peptide) Reverses Intrinsic Antibiotic Resistance in All ESKAPE Gramâ€Negative Bacteria. Angewandte Chemie - International Edition, 2020, 59, 6819-6826.	7.2	63
77	Plasmonic-Fluorescent Janus Ag/Ag ₂ S Nanoparticles for <i>In Situ</i> H ₂ O ₂ -Activated NIR-II Fluorescence Imaging. Nano Letters, 2021, 21, 2625-2633.	4.5	62
78	Cobalt Phosphide Double-Shelled Nanocages: Broadband Light-Harvesting Nanostructures for Efficient Photothermal Therapy and Self-Powered Photoelectrochemical Biosensing. Small, 2017, 13, 1700798.	5.2	60
79	Stimuli-responsive plasmonic core–satellite assemblies: i-motif DNA linker enabled intracellular pH sensing. Chemical Communications, 2013, 49, 5739.	2.2	56
80	Graphene Paper Decorated with a 2D Array of Dendritic Platinum Nanoparticles for Ultrasensitive Electrochemical Detection of Dopamine Secreted by Live Cells. Chemistry - A European Journal, 2016, 22, 5204-5210.	1.7	55
81	Structural Transformation of Cytochrome c and Apo Cytochrome c Induced by Sulfonated Polystyrene. Biomacromolecules, 2003, 4, 1293-1300.	2.6	54
82	pH-Responsive Capsules Derived from Nanocrystal Templating. Langmuir, 2005, 21, 11495-11499.	1.6	54
83	Surface enhanced Raman scattering by graphene-nanosheet-gapped plasmonic nanoparticle arrays for multiplexed DNA detection. Nanoscale, 2015, 7, 12606-12613.	2.8	54
84	Three-dimensional graphene biointerface with extremely high sensitivity to single cancer cell monitoring. Biosensors and Bioelectronics, 2018, 105, 22-28.	5.3	54
85	Mesoporous polydopamine with built-in plasmonic core: Traceable and NIR triggered delivery of functional proteins. Biomaterials, 2020, 238, 119847.	5.7	54
86	Dendronized Semiconducting Polymer as Photothermal Nanocarrier for Remote Activation of Gene Expression. Angewandte Chemie, 2017, 129, 9283-9287.	1.6	52
87	Synthesis and Antibacterial Study of Sulfobetaine/Quaternary Ammonium-Modified Star-Shaped Poly[2-(dimethylamino)ethyl methacrylate]-Based Copolymers with an Inorganic Core. Biomacromolecules, 2017, 18, 44-55.	2.6	51
88	Hydrogel Effects Rapid Biofilm Debridement with ex situ Contact-Kill to Eliminate Multidrug Resistant Bacteria in vivo. ACS Applied Materials & Interfaces, 2018, 10, 20356-20367.	4.0	51
89	Application and development of superparamagnetic nanoparticles in sample pretreatment and immunochromatographic assay. TrAC - Trends in Analytical Chemistry, 2019, 114, 151-170.	5.8	51
90	Quantum Dots with Multivalent and Compact Polymer Coatings for Efficient Fluorescence Resonance Energy Transfer and Self-Assembled Biotagging. Chemistry of Materials, 2010, 22, 4372-4378.	3.2	50

#	Article	IF	CITATIONS
91	High Refractive Index Inorganic–Organic Interpenetrating Polymer Network (IPN) Hydrogel Nanocomposite toward Artificial Cornea Implants. ACS Macro Letters, 2012, 1, 876-881.	2.3	48
92	Biocompatible Polysiloxane-Containing Diblock Copolymer PEO- <i>b</i> PγMPS for Coating Magnetic Nanoparticles. ACS Applied Materials & Interfaces, 2009, 1, 2134-2140.	4.0	46
93	Structural Factors of Rigidâ^'Coil Polymer Pairs Influencing Their Self-Assembly in Common Solvent. Journal of Physical Chemistry B, 2004, 108, 16023-16029.	1.2	45
94	A Selfâ€Assembled Plasmonic Substrate for Enhanced Fluorescence Resonance Energy Transfer. Advanced Materials, 2020, 32, e1906475.	11.1	45
95	Proton-resistant quantum dots: Stability in gastrointestinal fluids and implications for oral delivery of nanoparticle agents. Nano Research, 2009, 2, 500-508.	5.8	44
96	Cationic polycarbonate-grafted superparamagnetic nanoparticles with synergistic dual-modality antimicrobial activity. Biomaterials Science, 2016, 4, 871-879.	2.6	42
97	pH-dependent multiple morphologies of novel aggregates of carboxyl-terminated polymide in water. European Physical Journal E, 2004, 15, 211-215.	0.7	41
98	Localized Degradation of Neutrophil Extracellular Traps by Photoregulated Enzyme Delivery for Cancer Immunotherapy and Metastasis Suppression. ACS Nano, 2022, 16, 2585-2597.	7.3	41
99	A novel approach to polymeric hollow nanospheres with stabilized structureElectronic supplementary information (ESI) available: experimental details. See http://www.rsc.org/suppdata/cc/b2/b210851h/. Chemical Communications, 2003, , 496-497.	2.2	40
100	Metabolic Labeling Mediated Targeting and Thermal Killing of Gramâ€Positive Bacteria by Selfâ€Reporting Janus Magnetic Nanoparticles. Small, 2021, 17, e2006357.	5.2	40
101	In situ synthesis of large-area single sub-10 nm nanoparticle arrays by polymer pen lithography. Nanoscale, 2014, 6, 749-752.	2.8	39
102	Robust Nanoparticle–DNA Conjugates Based on Mussel-Inspired Polydopamine Coating for Cell Imaging and Tailored Self-Assembly. Bioconjugate Chemistry, 2016, 27, 815-823.	1.8	39
103	In Vitro and In Vivo Photothermal Cancer Therapeutic Effects of Gold Nanorods Modified with Mushroom β-Glucan. Journal of Agricultural and Food Chemistry, 2018, 66, 4091-4098.	2.4	39
104	Photoactive Nanocarriers for Controlled Delivery. Advanced Functional Materials, 2020, 30, 1903896.	7.8	38
105	Functionalized MXene Enabled Sustainable Water Harvesting and Desalination. Advanced Sustainable Systems, 2020, 4, 2000102.	2.7	36
106	A synergistic optical strategy for enhanced deep-tumor penetration and therapy in the second near-infrared window. Materials Horizons, 2020, 7, 2929-2935.	6.4	33
107	Improving the performance of upconversion nanoprobe-based lateral flow immunoassays by supramolecular self-assembly core/shell strategies. Sensors and Actuators B: Chemical, 2020, 318, 128233.	4.0	33
108	Synthesis of amphiphilic block-graft copolymers [poly(styrene-b-ethylene-co-butylene-b-styrene)-g-poly(acrylic acid)] and their aggregation in water. Journal of Polymer Science Part A, 2002, 40, 1253-1266.	2.5	31

#	Article	IF	CITATIONS
109	Stable and Biocompatible Mushroom β-Glucan Modified Gold Nanorods for Cancer Photothermal Therapy. Journal of Agricultural and Food Chemistry, 2017, 65, 9529-9536.	2.4	30
110	Zwitterionic Polymer Modified Porous Carbon for High-Performance and Antifouling Capacitive Desalination. ACS Applied Materials & amp; Interfaces, 2018, 10, 33564-33573.	4.0	27
111	Responsive Amorphous Photonic Structures of Spherical/Polyhedral Colloidal Metal–Organic Frameworks. Advanced Optical Materials, 2019, 7, 1900522.	3.6	27
112	Incorporating nanoporous polyaniline into layer-by-layer ionic liquid–carbon nanotube–graphene paper: towards freestanding flexible electrodes with improved supercapacitive performance. Nanotechnology, 2015, 26, 374002.	1.3	26
113	Double‣ayered Plasmonic–Magnetic Vesicles by Selfâ€Assembly of Janus Amphiphilic Gold–Iron(II,III) Oxide Nanoparticles. Angewandte Chemie, 2017, 129, 8222-8226.	1.6	25
114	Functional Macromoleculeâ€Enabled Colloidal Synthesis: From Nanoparticle Engineering to Multifunctionality. Advanced Materials, 2019, 31, e1902733.	11.1	25
115	Musselâ€Inspired Dualâ€5uperlyophobic Biomass Membranes for Selective Oil/Water Separation. Advanced Materials Interfaces, 2020, 7, 1901756.	1.9	25
116	Evaluation of Controlled Release Urea on the Dynamics of Nitrate, Ammonium, and Its Nitrogen Release in Black Soils of Northeast China. International Journal of Environmental Research and Public Health, 2018, 15, 119.	1.2	23
117	Silver nanoprism-based plasmonic ELISA for sensitive detection of fluoroquinolones. Journal of Materials Chemistry B, 2020, 8, 3667-3675.	2.9	22
118	Magnetic nanochains-based dynamic ELISA for rapid and ultrasensitive detection of acute myocardial infarction biomarkers. Analytica Chimica Acta, 2021, 1166, 338567.	2.6	22
119	Flexible Bioinspired Ternary Nanocomposites Based on Carboxymethyl Cellulose/Nanoclay/Graphene Oxide. ACS Applied Polymer Materials, 2019, 1, 1505-1513.	2.0	21
120	Universal and Switchable Omni-Repellency of Liquid-Infused Surfaces for On-Demand Separation of Multiphase Liquid Mixtures. ACS Nano, 2021, 15, 6977-6986.	7.3	20
121	Rapid fabrication of complex nanostructures using room-temperature ultrasonic nanoimprinting. Nature Communications, 2021, 12, 3146.	5.8	20
122	Bioinspired Production of Noniridescent Structural Colors by Adhesive Melanin-like Particles. Langmuir, 2019, 35, 9878-9884.	1.6	19
123	Electrochemical Microfluidic Multiplexed Bioanalysis by a Highly Active Bottlebrush-like Nanocarbon Microelectrode. Analytical Chemistry, 2022, 94, 4463-4473.	3.2	19
124	Antibacterial properties of synthesized cyclic and linear cationic copolymers. Polymer Chemistry, 2020, 11, 6632-6639.	1.9	18
125	Intracellular and Cellular Detection by SERSâ€Active Plasmonic Nanostructures. ChemBioChem, 2019, 20, 2432-2441.	1.3	16
126	Hierarchical Graphene/Metal–Organic Framework Composites with Tailored Wettability for Separation of Immiscible Liquids. ACS Applied Materials & Interfaces, 2020, 12, 35563-35571.	4.0	16

#	Article	IF	CITATIONS
127	Quantitative Analysis of Major Metals in Agricultural Biochar Using Laser-Induced Breakdown Spectroscopy with an Adaboost Artificial Neural Network Algorithm. Molecules, 2019, 24, 3753.	1.7	15
128	Polydopamine-mediated synthesis of core–shell gold@calcium phosphate nanoparticles for enzyme immobilization. Biomaterials Science, 2019, 7, 2841-2849.	2.6	15
129	Dynamic Magnetic Nanomixers for Improved Microarray Assays by Eliminating Diffusion Limitation. Advanced Healthcare Materials, 2019, 8, e1801022.	3.9	15
130	Smart Sensing Based on DNA–Metal Interaction Enables a Label-Free and Resettable Security Model of Electrochemical Molecular Keypad Lock. ACS Sensors, 2018, 3, 54-58.	4.0	14
131	Nacre Mimetic with Embedded Silver Nanowire for Resistive Heating. ACS Applied Nano Materials, 2018, 1, 940-952.	2.4	14
132	Raman-encoded, multivalent glycan-nanoconjugates for traceable specific binding and killing of bacteria. Biomaterials Science, 2018, 6, 1339-1346.	2.6	14
133	Glycosylated Copper Sulfide Nanocrystals for Targeted Photokilling of Bacteria in the Nearâ€Infrared II Window. Advanced Therapeutics, 2019, 2, 1900052.	1.6	14
134	Molecular complexes of calf thymus DNA with various bioactive compounds: Formation and characterization. International Journal of Biological Macromolecules, 2021, 168, 775-783.	3.6	14
135	Hierarchical Disordered Colloidal Thin Films with Duplex Optical Elements for Advanced Antiâ€Counterfeiting Coding. Advanced Optical Materials, 2020, 8, 2001378.	3.6	12
136	Labeling and Tracking P2 Purinergic Receptors in Living Cells Using ATP onjugated Quantum Dots. Advanced Functional Materials, 2011, 21, 2776-2780.	7.8	11
137	Homoepitaxial growth on semiconductor nanocrystals for efficient and stable visible-light photocatalytic hydrogen evolution. Nanoscale, 2017, 9, 17794-17801.	2.8	11
138	Thiophene-derived polymer dots for imaging endocytic compartments in live cells and broad-spectrum bacterial killing. Materials Chemistry Frontiers, 2017, 1, 152-157.	3.2	11
139	Selfâ€Assembly of Polymerâ€Coated Plasmonic Nanocrystals: From Synthetic Approaches to Practical Applications. Macromolecular Rapid Communications, 2019, 40, e1800613.	2.0	11
140	A Glycosylated Cationic Block Poly(βâ€peptide) Reverses Intrinsic Antibiotic Resistance in All ESKAPE Gramâ€Negative Bacteria. Angewandte Chemie, 2020, 132, 6886-6893.	1.6	11
141	Chargeâ€Reversal Polymer Nanoâ€modulators for Photodynamic Immunotherapy of Cancer. Angewandte Chemie, 2021, 133, 19504-19512.	1.6	11
142	Colloidally Stable Amphibious Nanocrystals Derived from Poly{[2-(dimethylamino)ethyl] Methacrylate} Capping. Angewandte Chemie, 2005, 117, 1745-1748.	1.6	9
143	Fluorocarbon Modified Nitroxide:Â A New Electron Spin Resonance Spin Probe for Micellization of Surfactants. Langmuir, 2001, 17, 5685-5687.	1.6	8
144	Revisiting Metal Electrodeposition in Porous Anodic Alumina: Toward Tailored Preparation of Metal Nanotube Arrays. Journal of the Electrochemical Society, 2018, 165, D129-D134.	1.3	8

#	Article	IF	CITATIONS
145	Macromolecular assembly: from irregular aggregates to regular nanostructures. Macromolecular Symposia, 2003, 195, 165-170.	0.4	7
146	Size-Controllable Magnetic Iron Oxide Nanorods for Biomarker Targeting and Improving Microfluidic Mixing. ACS Applied Bio Materials, 2019, 2, 3362-3371.	2.3	7
147	Multienzyme nanoassemblies: from rational design to biomedical applications. Biomaterials Science, 2021, 9, 7323-7342.	2.6	7
148	Using Diphenylphosphoryl Azide (DPPA) for the Facile Synthesis of Biodegradable Antiseptic Random Copolypeptides. Macromolecular Rapid Communications, 2017, 38, 1600601.	2.0	6
149	Chemical processing of interfacially assembled metal nanowires for surfaceâ€enhanced Raman scattering detection of food contaminants. Journal of Raman Spectroscopy, 2021, 52, 532-540.	1.2	5
150	Polydopamineâ€Mediated Superlyophobic Polysiloxane Coating of Porous Substrates for Efficient Separation of Immiscible Liquids. Advanced Materials Interfaces, 2020, 7, 2000428.	1.9	4
151	Caging Cationic Polymer Brushâ€Coated Plasmonic Nanostructures for Traceable Selective Antimicrobial Activities. Macromolecular Rapid Communications, 2022, 43, e2100812.	2.0	4
152	Application of Graphene Oxide in Jet A-1 in Air to Enhance Combustion Process. , 2018, , .		1
153	Antibiofilm Activity of Gallium(III) Complexed Anionic Polymers in Combination with Antibiotics. Macromolecular Rapid Communications, 2021, 42, 2100255.	2.0	1
154	Nanobiointerfaces: a themed collection. Biomaterials Science, 2018, 6, 706-707.	2.6	0
155	Polymer-Enabled Self-Assembly of Plasmonic Nanostructures. , 2022, , 127-182.		0
156	Controlled Delivery. , 2022, , 525-553.		0
157	Biomedical Applications of Plasmonic Nanoparticles. , 2022, , 449-478.		0