
Raquel M. Gonçalves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8541318/publications.pdf Version: 2024-02-01

PAQUEL M. CONÃSALVES

#	Article	IF	CITATIONS
1	Fibrotic alterations in human annulus fibrosus correlate with progression of intervertebral disc herniation. Arthritis Research and Therapy, 2022, 24, 25.	3.5	9
2	Harnessing chitosan and poly-(γ-glutamic acid)-based biomaterials towards cancer immunotherapy. Materials Today Advances, 2022, 15, 100252.	5.2	5
3	Terminal complement complex formation is associated with intervertebral disc degeneration. European Spine Journal, 2021, 30, 217-226.	2.2	11
4	Immunomodulatory potential of chitosan-based materials for cancer therapy: a systematic review of <i>in vitro</i> , <i>in vivo</i> and clinical studies. Biomaterials Science, 2021, 9, 3209-3227.	5.4	22
5	Development of a standardized histopathology scoring system for intervertebral disc degeneration in rat models: An initiative of the <scp>ORS</scp> spine section. JOR Spine, 2021, 4, e1150.	3.2	49
6	Interleukin-1β and cathepsin D modulate formation of the terminal complement complex in cultured human disc tissue. European Spine Journal, 2021, 30, 2247-2256.	2.2	9
7	Therapeutic Strategies for IVD Regeneration through Hyaluronan/SDF-1-Based Hydrogel and Intravenous Administration of MSCs. International Journal of Molecular Sciences, 2021, 22, 9609.	4.1	7
8	Interleukin-1β More Than Mechanical Loading Induces a Degenerative Phenotype in Human Annulus Fibrosus Cells, Partially Impaired by Anti-Proteolytic Activity of Mesenchymal Stem Cell Secretome. Frontiers in Bioengineering and Biotechnology, 2021, 9, 802789.	4.1	4
9	Chitosan/γ-PGA nanoparticles-based immunotherapy as adjuvant to radiotherapy in breast cancer. Biomaterials, 2020, 257, 120218.	11.4	60
10	Decellularized Scaffolds for Intervertebral Disc Regeneration. Trends in Biotechnology, 2020, 38, 947-951.	9.3	25
11	Modulation of the In Vivo Inflammatory Response by Pro- Versus Anti-Inflammatory Intervertebral Disc Treatments. International Journal of Molecular Sciences, 2020, 21, 1730.	4.1	15
12	Articular Repair/Regeneration in Healthy and Inflammatory Conditions: From Advanced In Vitro to In Vivo Models. Advanced Functional Materials, 2020, 30, 1909523.	14.9	7
13	Effect of surface chemistry on hMSC growth under xeno-free conditions. Colloids and Surfaces B: Biointerfaces, 2020, 189, 110836.	5.0	6
14	Macrophages Down-Regulate Gene Expression of Intervertebral Disc Degenerative Markers Under a Pro-inflammatory Microenvironment. Frontiers in Immunology, 2019, 10, 1508.	4.8	50
15	Genetically Engineered-MSC Therapies for Non-unions, Delayed Unions and Critical-size Bone Defects. International Journal of Molecular Sciences, 2019, 20, 3430.	4.1	32
16	GEORG SCHMORL PRIZE OF THE GERMAN SPINE SOCIETY (DWG) 2018: combined inflammatory and mechanical stress weakens the annulus fibrosus: evidences from a loaded bovine AF organ culture. European Spine Journal, 2019, 28, 922-933.	2.2	14
17	Chitosan/poly(γ-glutamic acid) nanoparticles incorporating IFN-γ for immune response modulation in the context of colorectal cancer. Biomaterials Science, 2019, 7, 3386-3403.	5.4	32
18	Age-Correlated Phenotypic Alterations in Cells Isolated From Human Degenerated Intervertebral Discs With Contained Hernias. Spine, 2018, 43, E274-E284.	2.0	12

#	Article	IF	CITATIONS
19	Optimization of the use of a pharmaceutical grade xenoâ€free medium for in vitro expansion of human mesenchymal stem/stromal cells. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1785-e1795.	2.7	13
20	Immunomodulation of Human Mesenchymal Stem/Stromal Cells in Intervertebral Disc Degeneration. Spine, 2018, 43, E673-E682.	2.0	49
21	The inflammatory response in the regression of lumbar disc herniation. Arthritis Research and Therapy, 2018, 20, 251.	3.5	130
22	Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning. Frontiers in Immunology, 2018, 9, 2837.	4.8	350
23	Extracellular vesicles: intelligent delivery strategies for therapeutic applications. Journal of Controlled Release, 2018, 289, 56-69.	9.9	85
24	Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Frontiers in Immunology, 2018, 9, 847.	4.8	812
25	Stromal Cell Derived Factor-1-Mediated Migration of Mesenchymal Stem Cells Enhances Collagen Type Il Expression in Intervertebral Disc. Tissue Engineering - Part A, 2018, 24, 1818-1830.	3.1	10
26	Joint analysis of IVD herniation and degeneration by rat caudal needle puncture model. Journal of Orthopaedic Research, 2017, 35, 258-268.	2.3	31
27	Pro-inflammatory chitosan/poly(γ-glutamic acid) nanoparticles modulate human antigen-presenting cells phenotype and revert their pro-invasive capacity. Acta Biomaterialia, 2017, 63, 96-109.	8.3	45
28	Adsorbed Fibrinogen stimulates TLR-4 on monocytes and induces BMP-2 expression. Acta Biomaterialia, 2017, 49, 296-305.	8.3	22
29	Systemic Delivery of Bone Marrow Mesenchymal Stem Cells for In Situ Intervertebral Disc Regeneration. Stem Cells Translational Medicine, 2017, 6, 1029-1039.	3.3	31
30	Poly(γ-glutamic acid) and poly(γ-glutamic acid)-based nanocomplexes enhance type II collagen production in intervertebral disc. Journal of Materials Science: Materials in Medicine, 2017, 28, 6.	3.6	20
31	Extracellular Vesicles: Immunomodulatory messengers in the context of tissue repair/regeneration. European Journal of Pharmaceutical Sciences, 2017, 98, 86-95.	4.0	87
32	Anti-inflammatory Chitosan/Poly-Î ³ -glutamic acid nanoparticles control inflammation while remodeling extracellular matrix in degenerated intervertebral disc. Acta Biomaterialia, 2016, 42, 168-179.	8.3	68
33	Fibrinogen scaffolds with immunomodulatory properties promote inÂvivo bone regeneration. Biomaterials, 2016, 111, 163-178.	11.4	54
34	Mesenchymal Stem/Stromal Cells seeded on cartilaginous endplates promote Intervertebral Disc Regeneration through Extracellular Matrix Remodeling. Scientific Reports, 2016, 6, 33836.	3.3	37
35	A Degenerative/Proinflammatory Intervertebral Disc Organ Culture: An <i>Ex Vivo</i> Model for Anti-inflammatory Drug and Cell Therapy. Tissue Engineering - Part C: Methods, 2016, 22, 8-19.	2.1	35
36	Integrated Analysis of Biological Samples by Imaging Flow Cytometry. Microscopy and Microanalysis, 2015, 21, 95-96.	0.4	1

#	Article	IF	CITATIONS
37	An interferon-Î ³ -delivery system based on chitosan/poly(Î ³ -glutamic acid) polyelectrolyte complexes modulates macrophage-derived stimulation of cancer cell invasion in vitro. Acta Biomaterialia, 2015, 23, 157-171.	8.3	45
38	Improvement of Bovine Nucleus Pulposus Cells Isolation Leads to Identification of Three Phenotypically Distinct Cell Subpopulations. Tissue Engineering - Part A, 2015, 21, 2216-2227.	3.1	13
39	Poly(γ-Glutamic Acid) as an Exogenous Promoter of Chondrogenic Differentiation of Human Mesenchymal Stem/Stromal Cells. Tissue Engineering - Part A, 2015, 21, 1869-1885.	3.1	11
40	Macrophage response to chitosan/poly-(γ-glutamic acid) nanoparticles carrying an anti-inflammatory drug. Journal of Materials Science: Materials in Medicine, 2015, 26, 167.	3.6	36
41	Inflammation in intervertebral disc degeneration and regeneration. Journal of the Royal Society Interface, 2015, 12, 20141191.	3.4	291
42	Effect of Cell Density on Mesenchymal Stem Cells Aggregation in RGDâ€Alginate 3D Matrices under Osteoinductive Conditions. Macromolecular Bioscience, 2014, 14, 759-771.	4.1	52
43	The effect of hyaluronan-based delivery of stromal cell-derived factor-1 on the recruitment of MSCs in degenerating intervertebral discs. Biomaterials, 2014, 35, 8144-8153.	11.4	78
44	A Multicompartment Holder for Spinner Flasks Improves Expansion and Osteogenic Differentiation of Mesenchymal Stem Cells in Three-Dimensional Scaffolds. Tissue Engineering - Part C: Methods, 2014, 20, 984-993.	2.1	23
45	Macrophages stimulate gastric and colorectal cancer invasion through EGFR Y1086, c-Src, Erk1/2 and Akt phosphorylation and smallGTPase activity. Oncogene, 2014, 33, 2123-2133.	5.9	103
46	Adsorbed fibrinogen leads to improved bone regeneration and correlates with differences in the systemic immune response. Acta Biomaterialia, 2013, 9, 7209-7217.	8.3	46
47	Enhanced mesenchymal stromal cell recruitment via natural killer cells by incorporation of inflammatory signals in biomaterials. Journal of the Royal Society Interface, 2012, 9, 261-271.	3.4	53
48	The effect of adsorbed fibronectin and osteopontin on macrophage adhesion and morphology on hydrophilic and hydrophobic model surfaces. Acta Biomaterialia, 2012, 8, 3669-3677.	8.3	21
49	Biosynthesis of highly pure poly-γ-glutamic acid for biomedical applications. Journal of Materials Science: Materials in Medicine, 2012, 23, 1583-1591.	3.6	32
50	Mesenchymal stem cell recruitment by stromal derived factor-1-delivery systems based on chitosan/poly(γ-glutamic acid) polyelectrolyte complexes. , 2012, 23, 249-261.		46
51	Layer-by-Layer Self-Assembly of Chitosan and Poly(γ-glutamic acid) into Polyelectrolyte Complexes. Biomacromolecules, 2011, 12, 4183-4195.	5.4	107
52	Bioactivity of immobilized EGF on selfâ€assembled monolayers: Optimization of the immobilization process. Journal of Biomedical Materials Research - Part A, 2010, 94A, 576-585.	4.0	14
53	Dynamic cell-cell interactions between cord blood haematopoietic progenitors and the cellular niche are essential for the expansion of CD34 ⁺ , CD34 ⁺ CD38 ^{â[^]} and early lymphoid CD7 ⁺ cells. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 149-158.	2.7	37
54	Differences amid bone marrow and cord blood hematopoietic stem/progenitor cell division kinetics. Journal of Cellular Physiology, 2009, 220, 102-111.	4.1	43

RAQUEL M. GONçALVES

#	Article	IF	CITATIONS
55	Induction of notch signaling by immobilization of jagged-1 on self-assembled monolayers. Biomaterials, 2009, 30, 6879-6887.	11.4	29
56	Kinetic Analysis of the ex vivo Expansion of Human Hematopoietic Stem/Progenitor Cells. Biotechnology Letters, 2006, 28, 335-340.	2.2	8
57	A Stro-1+ human universal stromal feeder layer to expand/maintain human bone marrow hematopoietic stem/progenitor cells in a serum-free culture system. Experimental Hematology, 2006, 34, 1353-1359.	0.4	60
58	A human stromal-based serum-free culture system supports the ex vivo expansion/maintenance of bone marrow and cord blood hematopoietic stem/progenitor cells. Experimental Hematology, 2005, 33, 828-835.	0.4	109
59	Modelling of ex vivo expansion/maintenance of hematopoietic stem cells. Bioprocess and Biosystems Engineering, 2003, 25, 365-369.	3.4	22
60	Hematopoietic stem cells: from the bone to the bioreactor. Trends in Biotechnology, 2003, 21, 233-240.	9.3	119