Jeffrey S Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8540976/publications.pdf

Version: 2024-02-01

		516710	642732
27	2,000	16	23
papers	citations	h-index	g-index
32	32	32	3348
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A novel variant in the GNAS complex locus causes Albright hereditary osteodystrophy with pseudopseudohypoparathyroidism. JAAD Case Reports, 2022, 21, 103-105.	0.8	O
2	Biased agonists of the chemokine receptor CXCR3 differentially signal through Gl_{\pm} _i : l_{\pm} -arrestin complexes. Science Signaling, 2022, 15, eabg5203.	3.6	13
3	Location Bias Contributes to Functionally Selective Responses of Biased CXCR3 Agonists to Regulate Inflammation. FASEB Journal, 2022, 36, .	0.5	O
4	Phosphorylation barcode ensembles encoded by biased CXCR3 agonists direct nonâ€redundant chemokine signaling. FASEB Journal, 2022, 36, .	0.5	0
5	A case of refractory verrucous varicella zoster virus in a patient with persistent pancytopenia after <scp>CARâ€₹</scp> therapy. British Journal of Dermatology, 2022, , .	1.5	1
6	JAK in the [Black] Box: A Dermatology Perspective on Systemic JAK Inhibitor Safety. American Journal of Clinical Dermatology, 2022, 23, 427-431.	6.7	23
7	Mass Spectrometry-Based for Analysis of. Methods in Molecular Biology, 2021, 2259, 247-257.	0.9	O
8	Noncanonical interactions of G proteins and $\hat{l}^2\hat{a}$ errestins: from competitors to companions. FEBS Journal, 2021, 288, 2550-2561.	4.7	9
9	Noncanonical scaffolding of G _{αi} and β-arrestin by G protein–coupled receptors. Science, 2021, 371, .	12.6	64
10	Seroconversion of severe acute respiratory syndrome coronavirus 2–infected patients on immunosuppression: A retrospective analysis. Journal of the American Academy of Dermatology, 2021, 84, 1409-1412.	1.2	4
11	Cutaneous mucormycosis arising in the skin folds of immunocompromised patients: AÂcase series. JAAD Case Reports, 2021, 17, 92-95.	0.8	5
12	IL-27 Derived From Macrophages Facilitates IL-15 Production and T Cell Maintenance Following Allergic Hypersensitivity Responses. Frontiers in Immunology, 2021, 12, 713304.	4.8	7
13	Tandem Mass Tag Labeling Facilitates Reversed-Phase Liquid Chromatography-Mass Spectrometry Analysis of Hydrophilic Phosphopeptides. Analytical Chemistry, 2019, 91, 11606-11613.	6.5	22
14	Pathogen Evasion of Chemokine Response Through Suppression of CXCL10. Frontiers in Cellular and Infection Microbiology, 2019, 9, 280.	3.9	33
15	Biased signalling: from simple switches to allosteric microprocessors. Nature Reviews Drug Discovery, 2018, 17, 243-260.	46.4	524
16	T Cells Expressing the Chemokine Receptor CXCR3 Localize to Positive Patch Test Reaction Sites. Dermatitis, 2018, 29, 228-229.	1.6	1
17	Biased agonists of the chemokine receptor CXCR3 differentially control chemotaxis and inflammation. Science Signaling, $2018,11,$	3.6	40
18	Manifold roles of \hat{l}^2 -arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9. Science Signaling, 2018, 11, .	3.6	169

#	Article	IF	CITATIONS
19	Chemokine Signaling in Allergic Contact Dermatitis: Toward Targeted Therapies. Dermatitis, 2018, 29, 179-186.	1.6	19
20	C-X-C Motif Chemokine Receptor 3 Splice Variants Differentially Activate Beta-Arrestins to Regulate Downstream Signaling Pathways. Molecular Pharmacology, 2017, 92, 136-150.	2.3	50
21	The β-Arrestins: Multifunctional Regulators of G Protein-coupled Receptors. Journal of Biological Chemistry, 2016, 291, 8969-8977.	3.4	246
22	Characterization of individual mouse cerebrospinal fluid proteomes. Proteomics, 2014, 14, 1102-1106.	2.2	27
23	Stress-Induced Activation of the Dynorphin/κ-Opioid Receptor System in the Amygdala Potentiates Nicotine Conditioned Place Preference. Journal of Neuroscience, 2012, 32, 1488-1495.	3. 6	87
24	Severe stress switches CRF action in the nucleus accumbens from appetitive to aversive. Nature, 2012, 490, 402-406.	27.8	255
25	Stress Produces Aversion and Potentiates Cocaine Reward by Releasing Endogenous Dynorphins in the Ventral Striatum to Locally Stimulate Serotonin Reuptake. Journal of Neuroscience, 2012, 32, 17582-17596.	3.6	96
26	Molecular Characterization of Nitrogen-Containing Organic Compounds in Biomass Burning Aerosols Using High-Resolution Mass Spectrometry. Environmental Science & Environmental	10.0	219
27	Molecular Characterization of Biomass Burning Aerosols Using High-Resolution Mass Spectrometry. Analytical Chemistry, 2009, 81, 1512-1521.	6.5	70