Pedro Maria FernÃ;ndez-Salguero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8540596/publications.pdf

Version: 2024-02-01

101 papers

10,547 citations

41344 49 h-index 100 g-index

105 all docs

105 docs citations

105 times ranked 9890 citing authors

#	Article	IF	CITATIONS
1	Aryl Hydrocarbon Receptor: From Homeostasis to Tumor Progression. Frontiers in Cell and Developmental Biology, 2022, 10, 884004.	3.7	8
2	Aryl hydrocarbon receptor blocks aging-induced senescence in the liver and fibroblast cells. Aging, 2022, 14, 4281-4304.	3.1	10
3	Loss of Aryl Hydrocarbon Receptor Favors K-RasG12D-Driven Non-Small Cell Lung Cancer. Cancers, 2021, 13, 4071.	3.7	7
4	The aryl hydrocarbon receptor promotes differentiation during mouse preimplantational embryo development. Stem Cell Reports, 2021, 16, 2351-2363.	4.8	9
5	Aryl Hydrocarbon Receptor Controls Skin Homeostasis, Regeneration, and Hair Follicle Cycling by Adjusting Epidermal Stem Cell Function. Stem Cells, 2021, 39, 1733-1750.	3.2	12
6	Alu retrotransposons modulate Nanog expression through dynamic changes in regional chromatin conformation via aryl hydrocarbon receptor. Epigenetics and Chromatin, 2020, 13, 15.	3.9	12
7	Vav proteins maintain epithelial traits in breast cancer cells using miR-200c-dependent and independent mechanisms. Oncogene, 2019, 38, 209-227.	5.9	11
8	Lack of the aryl hydrocarbon receptor accelerates aging in mice. FASEB Journal, 2019, 33, 12644-12654.	0.5	36
9	The aryl hydrocarbon receptor in the crossroad of signalling networks with therapeutic value. , 2018, 185, 50-63.		72
10	Histone H4 acetylation regulates behavioral inter-individual variability in zebrafish. Genome Biology, 2018, 19, 55.	8.8	25
11	Aryl Hydrocarbon Receptor Promotes Liver Polyploidization and Inhibits PI3K, ERK, and Wnt/β-Catenin Signaling. IScience, 2018, 4, 44-63.	4.1	26
12	Dioxin Receptor Adjusts Liver Regeneration After Acute Toxic Injury and Protects Against Liver Carcinogenesis. Scientific Reports, 2017, 7, 10420.	3.3	25
13	Lung regeneration after toxic injury is improved in absence of dioxin receptor. Stem Cell Research, 2017, 25, 61-71.	0.7	21
14	New Trends in Aryl Hydrocarbon Receptor Biology. Frontiers in Cell and Developmental Biology, 2016, 4, 45.	3.7	194
15	CD69 controls the uptake of L-tryptophan through LAT1-CD98 and AhR-dependent secretion of IL-22 in psoriasis. Nature Immunology, 2016, 17, 985-996.	14.5	98
16	piRNA-associated proteins and retrotransposons are differentially expressed in murine testis and ovary of aryl hydrocarbon receptor deficient mice. Open Biology, 2016, 6, 160186.	3.6	16
17	<i>Alu</i> retrotransposons promote differentiation of human carcinoma cells through the aryl hydrocarbon receptor. Nucleic Acids Research, 2016, 44, 4665-4683.	14.5	45
18	RNA-Seq Analysis to Measure the Expression of SINE Retroelements. Methods in Molecular Biology, 2016, 1400, 107-116.	0.9	1

#	Article	IF	Citations
19	Dioxin receptor regulates aldehyde dehydrogenase to block melanoma tumorigenesis and metastasis. Molecular Cancer, 2015, 14, 148.	19.2	31
20	Skin response to a carcinogen involves the xenobiotic receptor pregnane X receptor. Experimental Dermatology, 2015, 24, 835-840.	2.9	18
21	Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch. Development (Cambridge), 2015, 142, 41-50.	2.5	89
22	A mesenchymalâ€ike phenotype and expression of CD44 predict lack of apoptotic response to sorafenib in liver tumor cells. International Journal of Cancer, 2015, 136, E161-72.	5.1	108
23	Aryl Hydrocarbon Receptor–Dependent Induction of Liver Fibrosis by Dioxin. Toxicological Sciences, 2014, 137, 114-124.	3.1	99
24	The Dioxin receptor modulates Caveolin-1 mobilization during directional migration: role of cholesterol. Cell Communication and Signaling, 2014, 12, 57.	6.5	15
25	L-Kynurenine/Aryl Hydrocarbon Receptor Pathway Mediates Brain Damage After Experimental Stroke. Circulation, 2014, 130, 2040-2051.	1.6	100
26	The dioxin receptor controls β1 integrin activation in fibroblasts through a Cbp–Csk–Src pathway. Cellular Signalling, 2013, 25, 848-859.	3.6	27
27	The dioxin receptor has tumor suppressor activity in melanoma growth and metastasis. Carcinogenesis, 2013, 34, 2683-2693.	2.8	63
28	Dioxin Receptor Expression Inhibits Basal and Transforming Growth Factor \hat{l}^2 -induced Epithelial-to-mesenchymal Transition. Journal of Biological Chemistry, 2013, 288, 7841-7856.	3.4	47
29	Aryl hydrocarbon receptor contributes to the MEK/ERK-dependent maintenance of the immature state of human dendritic cells. Blood, 2013, 121, e108-e117.	1.4	37
30	Oculomotor Deficits in Aryl Hydrocarbon Receptor Null Mouse. PLoS ONE, 2013, 8, e53520.	2.5	37
31	Aryl Hydrocarbon Receptor-Induced Adrenomedullin Mediates Cigarette Smoke Carcinogenicity in Humans and Mice. Cancer Research, 2012, 72, 5790-5800.	0.9	47
32	Aryl hydrocarbon receptorâ€dependent induction of apoptosis by 2,3,7,8â€ŧetrachlorodibenzoâ€∢i>p) a€dioxin in cerebellar granule cells from mouse. Journal of Neurochemistry, 2011, 118, 153-162.	3.9	51
33	B1-SINE retrotransposons. Mobile Genetic Elements, 2011, 1, 66-70.	1.8	18
34	Transcriptional Factor Aryl Hydrocarbon Receptor (Ahr) Controls Cardiovascular and Respiratory Functions by Regulating the Expression of the Vav3 Proto-oncogene. Journal of Biological Chemistry, 2011, 286, 2896-2909.	3.4	57
35	Dioxin receptor and SLUG transcription factors regulate the insulator activity of B1 SINE retrotransposons via an RNA polymerase switch. Genome Research, 2011, 21, 422-432.	5.5	76
36	A remarkable new target gene for the dioxin receptor. Cell Adhesion and Migration, 2010, 4, 172-175.	2.7	25

#	Article	IF	CITATIONS
37	2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptosis in neural growth factor (NGF)-differentiated pheochromocytoma PC12 cells. NeuroToxicology, 2010, 31, 267-276.	3.0	35
38	Dioxin Receptor Deficiency Impairs Angiogenesis by a Mechanism Involving VEGF-A Depletion in the Endothelium and Transforming Growth Factor- \hat{l}^2 Overexpression in the Stroma. Journal of Biological Chemistry, 2009, 284, 25135-25148.	3.4	71
39	Loss of dioxin-receptor expression accelerates wound healing in vivo by a mechanism involving TGF \hat{l}^2 . Journal of Cell Science, 2009, 122, 1823-1833.	2.0	58
40	The Dioxin Receptor Regulates the Constitutive Expression of the <i>Vav3</i> Proto-Oncogene and Modulates Cell Shape and Adhesion. Molecular Biology of the Cell, 2009, 20, 1715-1727.	2.1	72
41	Fitting a xenobiotic receptor into cell homeostasis: How the dioxin receptor interacts with $TGF\hat{l}^2$ signaling. Biochemical Pharmacology, 2009, 77, 700-712.	4.4	67
42	Role of transforming growth factor \hat{l}^2 in cancer microenvironment. Clinical and Translational Oncology, 2009, 11, 715-720.	2.4	27
43	Regulation of cell survival by resveratrol involves inhibition of NFκBâ€regulated gene expression in prostate cancer cells. Prostate, 2009, 69, 1045-1054.	2.3	70
44	Recruitment of CREB1 and Histone Deacetylase 2 (HDAC2) to the Mouse Ltbp-1 Promoter Regulates its Constitutive Expression in a Dioxin Receptor-dependent Manner. Journal of Molecular Biology, 2008, 380, 1-16.	4.2	36
45	Genome-wide B1 retrotransposon binds the transcription factors dioxin receptor and Slug and regulates gene expression $\langle i \rangle$ in $vivo \langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1632-1637.	7.1	64
46	Non-genomic action of resveratrol on androgen and oestrogen receptors in prostate cancer: modulation of the phosphoinositide 3-kinase pathway. British Journal of Cancer, 2007, 96, 1595-1604.	6.4	55
47	The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS Letters, 2007, 581, 3608-3615.	2.8	347
48	Mechanisms Involved in Resveratrol-Induced Apoptosis and Cell Cycle Arrest in Prostate Cancer-Derived Cell Lines. Journal of Andrology, 2006, 28, 282-293.	2.0	152
49	LTBP-1 blockade in dioxin receptor-null mouse embryo fibroblasts decreases TGF-β activity: Role of extracellular proteases plasmin and elastase. Journal of Cellular Biochemistry, 2006, 97, 380-392.	2.6	37
50	The dioxin receptor is silenced by promoter hypermethylation in human acute lymphoblastic leukemia through inhibition of Sp1 binding. Carcinogenesis, 2006, 27, 1099-1104.	2.8	97
51	Resveratrolâ€induced apoptosis in MCFâ€7 human breast cancer cells involves a caspaseâ€independent mechanism with downregulation of Bclâ€2 and NFâ€ŶB. International Journal of Cancer, 2005, 115, 74-84.	5.1	208
52	Improving Cancer Therapeutics by Molecular Profiling. Current Drug Metabolism, 2005, 6, 553-568.	1.2	4
53	Immortalized Mouse Mammary Fibroblasts Lacking Dioxin Receptor Have Impaired Tumorigenicity in a Subcutaneous Mouse Xenograft Model. Journal of Biological Chemistry, 2005, 280, 28731-28741.	3 . 4	87
54	Overexpression of latent transforming growth factor- \hat{l}^2 binding protein 1 (LTBP-1) in dioxin receptor-null mouse embryo fibroblasts. Journal of Cell Science, 2004, 117, 849-859.	2.0	51

#	Article	IF	CITATIONS
55	Liver portal fibrosis in dioxin receptor-null mice that overexpress the latent transforming growth factor-Î ² -binding protein-1. International Journal of Experimental Pathology, 2004, 85, 295-302.	1.3	43
56	Resveratrol modulates the phosphoinositide 3â€kinase pathway through an estrogen receptor αâ€dependent mechanism: Relevance in cell proliferation. International Journal of Cancer, 2004, 109, 167-173.	5.1	130
57	Thioridazine steady-state plasma concentrations are influenced by tobacco smoking and CYP2D6, but not by the CYP2C9 genotype. European Journal of Clinical Pharmacology, 2003, 59, 45-50.	1.9	46
58	Polycyclic aromatic hydrocarbon-inducible DNA adducts: Evidence by32P-postlabeling and use of knockout mice for Ah receptor-independent mechanisms of metabolic activationin vivo. International Journal of Cancer, 2003, 103, 5-11.	5.1	71
59	Down-regulation of CYP1A2 induction during the maturation of mouse cerebellar granule cells in culture: role of nitric oxide accumulation. European Journal of Neuroscience, 2003, 18, 2265-2272.	2.6	13
60	Proteasome Inhibition Induces Nuclear Translocation of the Dioxin Receptor Through an Sp1 and Protein Kinase C-Dependent Pathway. Journal of Molecular Biology, 2003, 333, 249-260.	4.2	25
61	Carcinogenesis of the food mutagen PhIP in mice is independent of CYP1A2. Carcinogenesis, 2003, 24, 583-587.	2.8	38
62	The antiproliferative activity of resveratrol results in apoptosis in MCF-7 but not in MDA-MB-231 human breast cancer cells: cell-specific alteration of the cell cycle. Biochemical Pharmacology, 2002, 64, 1375-1386.	4.4	210
63	Neuroprotection Against Excitotoxicity by N-Alkylglycines in Rat Hippocampal Neurons. NeuroMolecular Medicine, 2002, 2, 271-280.	3.4	10
64	Effect of Thioridazine Dosage on the Debrisoquine Hydroxylation Phenotype in Psychiatric Patients With Different CYP2D6 Genotypes. Therapeutic Drug Monitoring, 2001, 23, 616-620.	2.0	48
65	Potassium-Induced Apoptosis in Rat Cerebellar Granule Cells Involves Cell-Cycle Blockade at the G1/S Transition. Journal of Molecular Neuroscience, 2001, 15, 155-166.	2.3	35
66	Targeted Genomic Disruption of H- ras and N- ras , Individually or in Combination, Reveals the Dispensability of Both Loci for Mouse Growth and Development. Molecular and Cellular Biology, 2001, 21, 1444-1452.	2.3	265
67	Proteasome Inhibition Induces Nuclear Translocation and Transcriptional Activation of the Dioxin Receptor in Mouse Embryo Primary Fibroblasts in the Absence of Xenobiotics. Molecular and Cellular Biology, 2001, 21, 1700-1709.	2.3	68
68	Hepatic fibrosis and cytochrome P450: experimental models of fibrosis compared to AHR knockout mice. Hepatology Research, 2000, 17, 112-125.	3.4	33
69	Amelioration of TCDD-induced teratogenesis in aryl hydrocarbon receptor (AhR)-null mice. Toxicological Sciences, 1999, 47, 86-92.	3.1	210
70	CYP1A2 is not the primary enzyme responsible for 4-aminobiphenyl-induced hepatocarcinogenesis in mice. Carcinogenesis, 1999, 20, 1825-1830.	2.8	66
71	Targeted Disruption of the Microsomal Epoxide Hydrolase Gene. Journal of Biological Chemistry, 1999, 274, 23963-23968.	3.4	173
72	Genomic instability in Gadd45a-deficient mice. Nature Genetics, 1999, 23, 176-184.	21.4	468

#	Article	IF	CITATIONS
73	Expression of CYP2A genes in human liver and extrahepatic tissues. Biochemical Pharmacology, 1999, 57, 1407-1413.	4.4	142
74	Dihydropyrimidine dehydrogenase pharmacogenetics in patients with colorectal cancer. British Journal of Cancer, 1998, 77, 497-500.	6.4	81
75	Dihydropyrimidine dehydrogenase pharmacogenetics in Caucasian subjects. British Journal of Clinical Pharmacology, 1998, 46, 151-156.	2.4	113
76	Characterization of the Human Dihydropyrimidine Dehydrogenase Gene. Genomics, 1998, 51, 391-400.	2.9	158
77	Effect of Phenobarbital on Hepatic CYP1A1 and CYP1A2 in the Ahr-Null Mouse. Biochemical Pharmacology, 1998, 55, 235-238.	4.4	34
78	The Involvement of Aryl Hydrocarbon Receptor in the Activation of Transforming Growth Factor- \hat{l}^2 and Apoptosis. Molecular Pharmacology, 1998, 54, 313-321.	2.3	143
79	Nomenclature for human DPYD alleles. Pharmacogenetics and Genomics, 1998, 8, 455-460.	5.7	99
80	Lesions of Aryl-hydrocarbon Receptor–deficient Mice. Veterinary Pathology, 1997, 34, 605-614.	1.7	313
81	Lack of correlation between phenotype and genotype for the polymorphically expressed dihydropyrimidine dehydrogenase in a family of Pakistani origin. Pharmacogenetics and Genomics, 1997, 7, 161-163.	5.7	33
82	CYP2A6 gene polymorphism and risk of liver cancer and cirrhosis. Pharmacogenetics and Genomics, 1997, 7, 247-250.	5.7	31
83	Selenocysteine tRNA[Ser]Sec Levels and Selenium-Dependent Glutathione Peroxidase Activity in Mouse Embryonic Stem Cells Heterozygous for a Targeted Mutation in the tRNA[Ser]Sec Gene. Biochemistry, 1997, 36, 8634-8639.	2.5	26
84	Role of CYP2E1 in the Hepatotoxicity of Acetaminophen. Journal of Biological Chemistry, 1996, 271, 12063-12067.	3.4	557
85	Differential Regulation of Mouse Ah Receptor Gene Expression in Cell Lines of Different Tissue Origins. Archives of Biochemistry and Biophysics, 1996, 333, 170-178.	3.0	57
86	The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary Genes and Development, 1996, 10, 60-69.	5.9	1,108
87	[44] Targeted disruption of specific cytochromes P450 and xenobiotic receptor genes. Methods in Enzymology, 1996, 272, 412-430.	1.0	2
88	Aryl-hydrocarbon Receptor-Deficient Mice Are Resistant to 2,3,7,8-Tetrachlorodibenzo-p-dioxin-Induced Toxicity. Toxicology and Applied Pharmacology, 1996, 140, 173-179.	2.8	762
89	Molecular basis of the human dihydropyrimidine dehydrogenase deficiency and 5-fluorouracil toxicity Journal of Clinical Investigation, 1996, 98, 610-615.	8.2	312
90	The CYP2 A gene subfamily: species differences, regulation, catalytic activities and role in chemical carcinogenesis. Pharmacogenetics and Genomics, 1995, 5, S123-S128.	5.7	78

#	Article	IF	CITATIONS
91	Neonatal lethality associated with respiratory distress in mice lacking cytochrome P450 1A2 Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 5134-5138.	7.1	104
92	Comparison of substrate metabolism by wild type CYP2D6 protein and a variant containing methionine, not valine, at position 374. Pharmacogenetics and Genomics, 1995, 5, 234-243.	5.7	35
93	Organization and evolution of the cytochrome P450 CYP2A-2B-2F subfamily gene cluster on human chromosome 19. Journal of Molecular Evolution, 1995, 41, 894-900.	1.8	62
94	Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science, 1995, 268, 722-726.	12.6	1,010
95	Correlation between catalytic activity and protein content for the polymorphically expressed dihydropyrimidine dehydrogenase in human lymphocytes. Biochemical Pharmacology, 1995, 50, 1015-1020.	4.4	27
96	Xenobiotic receptor knockout mice. Toxicology Letters, 1995, 82-83, 117-121.	0.8	45
97	Diagnostic analysis, clinical importance and molecular basis of dihydropyrimidine dehydrogenase deficiency. Trends in Pharmacological Sciences, 1995, 16, 325-327.	8.7	75
98	Assignment of the Human Dihydropyrimidine Dehydrogenase Gene (DPYD) to Chromosome Region 1p22 by Fluorescence in Situ Hybridization. Genomics, 1994, 24, 613-614.	2.9	45
99	Effect of immobilization on the activity of rat hepatic microsomal cytochrome P450 enzymes. Enzyme and Microbial Technology, 1993, 15, 100-104.	3.2	11
100	Differential scanning calorimetry study of glycogen phosphorylaseb-detergent interactions. Journal of Bioenergetics and Biomembranes, 1992, 24, 625-634.	2.3	6
101	Modulation of the sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase by pentobarbital. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1022, 33-40.	2.6	13