jia Rao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8540518/publications.pdf

Version: 2024-02-01

361413 315739 1,692 63 20 38 citations h-index g-index papers 68 68 68 2359 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome. Clinical Journal of the American Society of Nephrology: CJASN, 2018, 13, 53-62.	4.5	170
2	Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly. Nature Genetics, 2017, 49, 1529-1538.	21.4	164
3	Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. Journal of Clinical Investigation, 2017, 127, 912-928.	8.2	160
4	Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome. Nature Genetics, 2016, 48, 457-465.	21.4	149
5	Mutations in six nephrosis genes delineate a pathogenic pathway amenable to treatment. Nature Communications, 2018, 9, 1960.	12.8	90
6	Mutations in multiple components of the nuclear pore complex cause nephrotic syndrome. Journal of Clinical Investigation, 2018, 128, 4313-4328.	8.2	89
7	Establishing core outcome domains in pediatric kidney disease: report of the Standardized Outcomes in Nephrology—Children and Adolescents (SONG-KIDS) consensus workshops. Kidney International, 2020, 98, 553-565.	5.2	58
8	Mutations in <i>WDR4</i> as a new cause of Galloway–Mowat syndrome. American Journal of Medical Genetics, Part A, 2018, 176, 2460-2465.	1.2	56
9	Genetic spectrum of renal disease for 1001 Chinese children based on a multicenter registration system. Clinical Genetics, 2019, 96, 402-410.	2.0	52
10	GAPVD1 and ANKFY1 Mutations Implicate RAB5 Regulation in Nephrotic Syndrome. Journal of the American Society of Nephrology: JASN, 2018, 29, 2123-2138.	6.1	42
11	xmlns:mml="http://www.w3.org/1998/Math/MathML"id="M1"> <mml:msub><mml:mrow><mml:mi mathvariant="bold-italic">l±</mml:mi></mml:mrow><mml:mrow><mml:mi>V</mml:mi></mml:mrow>l²<mml:mn fontstyle="italic">3</mml:mn></mml:msub> /FAK/PI3K Pathway-Mediated Rac1	sub _{].} 5mml	:msyb> <mmk< td=""></mmk<>
12	Activation. BioMed Research International. 2013, 2013, 1-8. Advillin acts upstream of phospholipase C iµ1 in steroid-resistant nephrotic syndrome. Journal of Clinical Investigation, 2017, 127, 4257-4269.	8.2	39
13	Accuracy of Early DMSA Scan for VUR in Young Children With Febrile UTI. Pediatrics, 2014, 133, e30-e38.	2.1	34
14	Angiopoietin-like protein 3 regulates the motility and permeability of podocytes by altering nephrin expression in vitro. Biochemical and Biophysical Research Communications, 2010, 399, 31-36.	2.1	30
15	Analysis of 24 genes reveals a monogenic cause in 11.1% of cases with steroid-resistant nephrotic syndrome at a single center. Pediatric Nephrology, 2018, 33, 305-314.	1.7	30
16	A novel role of angiopoietin-like-3 associated with podocyte injury. Pediatric Research, 2015, 77, 732-739.	2.3	28
17	A vital role for Angptl3 in the PAN-induced podocyte loss by affecting detachment and apoptosis in vitro. BMC Nephrology, 2015, 16, 38.	1.8	27
18	Mutations of the Transcriptional Corepressor ZMYM2 Cause Syndromic Urinary Tract Malformations. American Journal of Human Genetics, 2020, 107, 727-742.	6.2	25

#	Article	IF	Citations
19	Efficacy of rituximab therapy in children with refractory nephrotic syndrome: a prospective observational study in Shanghai. World Journal of Pediatrics, 2014, 10, 59-63.	1.8	23
20	Efficacy of urine screening at school: experience in Shanghai, China. Pediatric Nephrology, 2007, 22, 2073-2079.	1.7	22
21	Genetic variants in the LAMA5 gene in pediatric nephrotic syndrome. Nephrology Dialysis Transplantation, 2019, 34, 485-493.	0.7	22
22	Angiopoietin-like protein 3 modulates barrier properties of human glomerular endothelial cells through a possible signaling pathway involving phosphatidylinositol-3 kinase/protein kinase B and integrin & amp; alpha; V& amp; beta; 3. Acta Biochimica Et Biophysica Sinica, 2008, 40, 459-465.	2.0	20
23	Phenotype and genotype spectra of a Chinese cohort with nephronophthisis-related ciliopathy. Journal of Medical Genetics, 2022, 59, 147-154.	3.2	20
24	Multicenter study of the clinical features and mutation gene spectrum of Chinese children with Dent disease. Clinical Genetics, 2020, 97, 407-417.	2.0	19
25	Human and mouse studies establish TBX6 in Mendelian CAKUT and as a potential driver of kidney defects associated with the 16p11.2 microdeletion syndrome. Kidney International, 2020, 98, 1020-1030.	5. 2	17
26	Oral Coenzyme Q10 supplementation leads to better preservation of kidney function in steroid-resistant nephrotic syndrome due to primary Coenzyme Q10 deficiency. Kidney International, 2022, 102, 604-612.	5.2	17
27	Galloway-Mowat syndrome in Taiwan: OSGEP mutation and unique clinical phenotype. Orphanet Journal of Rare Diseases, 2018, 13, 226.	2.7	16
28	Evaluation of the Predictive and Prognostic Values of Stromal Tumor-Infiltrating Lymphocytes in HER2-Positive Breast Cancers treated with neoadjuvant chemotherapy. Targeted Oncology, 2018, 13, 757-767.	3 . 6	15
29	COQ8B nephropathy: Early detection and optimal treatment. Molecular Genetics & amp; Genomic Medicine, 2020, 8, e1360.	1.2	15
30	Mutations in PRDM15 Are a Novel Cause of Galloway-Mowat Syndrome. Journal of the American Society of Nephrology: JASN, 2021, 32, 580-596.	6.1	15
31	Angiopoietin-like-3 knockout protects against glomerulosclerosis in murine adriamycin-induced nephropathy by attenuating podocyte loss. BMC Nephrology, 2019, 20, 185.	1.8	14
32	Panel sequencing distinguishes monogenic forms of nephritis from nephrosis in children. Nephrology Dialysis Transplantation, 2019, 34, 474-485.	0.7	13
33	A systematic review of interventions for reducing pain and distress in children undergoing voiding cystourethrography. Acta Paediatrica, International Journal of Paediatrics, 2012, 101, 224-229.	1.5	12
34	Variation of the clinical spectrum and genotype-phenotype associations in Coenzyme Q10 deficiency associated glomerulopathy. Kidney International, 2022, 102, 592-603.	5. 2	12
35	Follow-up results of children with melamine induced urolithiasis: a prospective observational cohort study. World Journal of Pediatrics, 2011, 7, 232-239.	1.8	11
36	Renal histological features of schoolâ€age children with asymptomatic haematuria and/or proteinuria: A multicenter study. Nephrology, 2014, 19, 426-431.	1.6	10

#	Article	IF	CITATIONS
37	Diagnostic and clinical utility of genetic testing in children with kidney failure. Pediatric Nephrology, 2021, 36, 3653-3662.	1.7	10
38	Early diagnosis of WT1 nephropathy and follow up in a Chinese multicenter cohort. European Journal of Medical Genetics, 2020, 63, 104047.	1.3	10
39	Assessment of chronic renal injury from melamine-associated pediatric urolithiasis: an eighteen-month prospective cohort study. Annals of Saudi Medicine, 2016, 36, 252-257.	1.1	9
40	Impact of tumor dimensions and lymph node density on the survival of patients with hypopharyngeal squamous cell carcinoma. Cancer Management and Research, 2018, Volume 10, 4679-4688.	1.9	9
41	Intrauterine low-protein diet aggravates developmental abnormalities of the urinary system via the Akt/Creb3 pathway in Robo2 mutant mice. American Journal of Physiology - Renal Physiology, 2020, 318, F43-F52.	2.7	8
42	Pediatric kidney transplantation in China: an analysis from the IPNA Global Kidney Replacement Therapy Registry. Pediatric Nephrology, 2021, 36, 685-692.	1.7	7
43	Heteroplasmic and homoplasmic m.616T>C in mitochondria tRNAPhe promote isolated chronic kidney disease and hyperuricemia. JCI Insight, 2022, 7, .	5.0	7
44	Genetic Architecture of Childhood Kidney and Urological Diseases in China. Phenomics, 2021, 1, 91-104.	2.9	6
45	Phenotypic spectrum and genetics of PAX2-related disorder in the Chinese cohort. BMC Medical Genomics, 2021, 14, 250.	1.5	6
46	Expression of DNA Damage Response Proteins and Associations with Clinicopathologic Characteristics in Chinese Familial Breast Cancer Patients with <i>BRCA1/2</i> Mutations. Journal of Breast Cancer, 2018, 21, 297.	1.9	5
47	Genetic and pathological findings in a boy with psoriasis and C3 glomerulonephritis: A case report and literature review. Molecular Genetics & Enomic Medicine, 2020, 8, e1430.	1.2	5
48	Clinicopathological features of paediatric renal biopsies in Shanghai over a 31â€∫year period. Nephrology, 2012, 17, 274-277.	1.6	4
49	Characteristics and outcomes of glomerulonephritis with membranoproliferative pattern in children. Translational Pediatrics, 2021, 10, 2985-2996.	1.2	4
50	Responsible genes in children with primary vesicoureteral reflux: findings from the Chinese Children Genetic Kidney Disease Database. World Journal of Pediatrics, 2021, 17, 409-418.	1.8	4
51	Gene mutation and clinical analysis of nephronophthisis diagnosed using whole exome sequencing: Experience from China. Clinical Nephrology, 2019, 92, 89-94.	0.7	4
52	Clinical Features and Risk Factors of Fungal Peritonitis in Children on Peritoneal Dialysis. Frontiers in Pediatrics, 2021, 9, 683992.	1.9	3
53	An accessible insight into genetic findings for transplantation recipients with suspected genetic kidney disease. Npj Genomic Medicine, 2021, 6, 57.	3.8	3
54	Risk Factors Associated With Renal and Urinary Tract Anomalies Delineated by an Ultrasound Screening Program in Infants. Frontiers in Pediatrics, 2021, 9, 728548.	1.9	3

#	Article	IF	CITATIONS
55	Urinary microprotein concentrations in the long-term follow-up of dilating vesicoureteral reflux patients who underwent medical or surgical treatment. International Urology and Nephrology, 2016, 48, 5-11.	1.4	2
56	Risk factors for loss of residual renal function in children with end-stage renal disease undergoing automatic peritoneal dialysis. Peritoneal Dialysis International, 2020, 40, 368-376.	2.3	2
57	Combined Preimplantation Genetic Testing for Genetic Kidney Disease: Genetic Risk Identification, Assisted Reproductive Cycle, and Pregnancy Outcome Analysis. Frontiers in Medicine, 0, 9, .	2.6	2
58	Genetic Variations and Clinical Features of NPHS1-Related Nephrotic Syndrome in Chinese Children: A Multicenter, Retrospective Study. Frontiers in Medicine, 2021, 8, 771227.	2.6	1
59	Risk factors for breakthrough urinary tract infection in children with vesicoureteral reflux receiving continuous antibiotic prophylaxis. Translational Pediatrics, 2022, 11, 1-9.	1.2	1
60	Reduction in peritonitis rates: 18 -year results from the most active pediatric peritoneal dialysis center in China. Pediatric Nephrology, 2022 , , 1 .	1.7	1
61	Integrating Population Variants and Protein Structural Analysis to Improve Clinical Genetic Diagnosis and Treatment in Nephrogenic Diabetes Insipidus. Frontiers in Pediatrics, 2021, 9, 566524.	1.9	0
62	Intrauterine Low-Protein Diet Exacerbates Abnormal Development of the Urinary System in <i>Gen1</i> -Mutant Mice. Kidney Diseases (Basel, Switzerland), 2021, 7, 1-12.	2.5	0
63	PPARα agonist exerts protective effects in podocyte injury via inhibition of the ANGPTL3 pathway. Experimental Cell Research, 2021, 407, 112753.	2.6	0