
Gina Lisignoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8539868/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design, Development and Validation of a Knee Brace to Standardize the US Imaging Evaluation of Knee Osteoarthritis. IEEE Journal of Translational Engineering in Health and Medicine, 2022, 10, 1-8.	3.7	1
2	Mesenchymal stromal cells from a progressive pseudorheumatoid dysplasia patient show altered osteogenic differentiation. European Journal of Medical Research, 2022, 27, 57.	2.2	0
3	RGD-Functionalized Hydrogel Supports the Chondrogenic Commitment of Adipose Mesenchymal Stromal Cells. Gels, 2022, 8, 382.	4.5	8
4	Preliminary study on immune cells in the synovium of end-stage osteoarthritis and rheumatoid arthritis patients: neutrophils and IgG4-secreting plasma cells as differential diagnosis candidates. Acta Histochemica, 2022, 124, 151909.	1.8	4
5	Primers for the Adhesion of Gellan Gumâ€Based Hydrogels to the Cartilage: A Comparative Study. Macromolecular Bioscience, 2022, 22, .	4.1	8
6	Wear Behavior Characterization of Hydrogels Constructs for Cartilage Tissue Replacement. Materials, 2021, 14, 428.	2.9	11
7	Graphene Oxideâ€Doped Gellan Gum–PEGDA Bilayered Hydrogel Mimicking the Mechanical and Lubrication Properties of Articular Cartilage. Advanced Healthcare Materials, 2021, 10, e2001434.	7.6	41
8	The effect of silk–gelatin bioink and TGF-β3 on mesenchymal stromal cells in 3D bioprinted chondrogenic constructs: A proteomic study. Journal of Materials Research, 2021, 36, 4051-4067.	2.6	10
9	A Blood Bank Standardized Production of Human Platelet Lysate for Mesenchymal Stromal Cell Expansion: Proteomic Characterization and Biological Effects. Frontiers in Cell and Developmental Biology, 2021, 9, 650490.	3.7	6
10	Bone Regeneration Improves with Mesenchymal Stem Cell Derived Extracellular Vesicles (EVs) Combined with Scaffolds: A Systematic Review. Biology, 2021, 10, 579.	2.8	10
11	Modeling and Fabrication of Silk Fibroin–Gelatin-Based Constructs Using Extrusion-Based Three-Dimensional Bioprinting. ACS Biomaterials Science and Engineering, 2021, 7, 3306-3320.	5.2	41
12	Polysaccharides on gelatin-based hydrogels differently affect chondrogenic differentiation of human mesenchymal stromal cells. Materials Science and Engineering C, 2021, 126, 112175.	7.3	14
13	Development and validation of low-intensity pulsed ultrasound systems for highly controlled in vitro cell stimulation. Ultrasonics, 2021, 116, 106495.	3.9	19
14	Engineered nasal cartilage for the repair of osteoarthritic knee cartilage defects. Science Translational Medicine, 2021, 13, eaaz4499.	12.4	22
15	Osteoarthritic Milieu Affects Adiposeâ€Đerived Mesenchymal Stromal Cells. Journal of Orthopaedic Research, 2020, 38, 336-347.	2.3	13
16	High Circulating Levels of IL-4 and IL-10 in Progressive Pseudorheumatoid Dysplasia Patient. Journal of Clinical Rheumatology, 2020, 26, e164-e166.	0.9	1
17	Engineered nasal cartilage for the repair of osteoarthritic knee cartilage defects. Cytotherapy, 2020, 22, S14.	0.7	2
18	Adipose-derived mesenchymal stromal cells specifically modulated CXCL10/IP10 chemokine detected in osteoarthritic milieu. Osteoarthritis and Cartilage, 2020, 28, S507-S508.	1.3	2

#	Article	IF	CITATIONS
19	Complement Expression and Activation in Osteoarthritis Joint Compartments. Frontiers in Immunology, 2020, 11, 535010.	4.8	18
20	Impact of Isolation Procedures on the Development of a Preclinical Synovial Fibroblasts/Macrophages in an In Vitro Model of Osteoarthritis. Biology, 2020, 9, 459.	2.8	5
21	PD-L1/PD-1 Pattern of Distribution within Bone Marrow Microenvironment Cells in Patients with Smoldering Myeloma and Active Multiple Myeloma. Blood, 2020, 136, 49-50.	1.4	1
22	Specific effects of osteoarthritic milieu and hypoxic conditions on adipose mesenchymal stromal cell migration and cytokine receptors expression. Cytotherapy, 2020, 22, S94.	0.7	0
23	Specific concentration of hyaluronan amide derivative induces osteogenic mineralization of human mesenchymal stromal cells: Evidence of <i>RUNX2</i> and <i>COL1A1</i> genes modulation. Journal of Biomedical Materials Research - Part A, 2019, 107, 2774-2783.	4.0	7
24	Rational Design and Development of Anisotropic and Mechanically Strong Gelatinâ€Based Stress Relaxing Hydrogels for Osteogenic/Chondrogenic Differentiation. Macromolecular Bioscience, 2019, 19, 1900099.	4.1	13
25	Chitosanâ€based scaffold counteracts hypertrophic and fibrotic markers in chondrogenic differentiated mesenchymal stromal cells. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1896-1911.	2.7	17
26	Osteoarthritic milieu and hypoxia exert specific effects on adipose mesenchymal stromal cell migration and cytokine receptor expression. Osteoarthritis and Cartilage, 2019, 27, S434-S435.	1.3	0
27	3D gelatin-chitosan hybrid hydrogels combined with human platelet lysate highly support human mesenchymal stem cell proliferation and osteogenic differentiation. Journal of Tissue Engineering, 2019, 10, 204173141984585.	5.5	59
28	Hydrogen sulfide-releasing silk fibroin scaffold for bone tissue engineering. Materials Science and Engineering C, 2019, 102, 471-482.	7.3	46
29	Biomaterials: Foreign Bodies or Tuners for the Immune Response?. International Journal of Molecular Sciences, 2019, 20, 636.	4.1	426
30	Investigating the Role of Sustained Calcium Release in Silk-Gelatin-Based Three-Dimensional Bioprinted Constructs for Enhancing the Osteogenic Differentiation of Human Bone Marrow Derived Mesenchymal Stromal Cells. ACS Biomaterials Science and Engineering, 2019, 5, 1518-1533.	5.2	35
31	OP0332â€COMPLEMENT FACTOR EXPRESSION AND ACTIVATION IN OSTEOARTHRITIS JOINT COMPARTMENTS. 2019, , .	• •	0
32	Effect of microfragmented adipose tissue on osteoarthritic synovial macrophage factors. Journal of Cellular Physiology, 2019, 234, 5044-5055.	4.1	16
33	Adipose mesenchymal stromal cells determine the switching of the pro-inflammatory profile of synovial osteoarthritic macrophages. Osteoarthritis and Cartilage, 2018, 26, S46.	1.3	0
34	Cartilage and Bone Serum Biomarkers as Novel Tools for Monitoring Knee Osteochondritis Dissecans Treated with Osteochondral Scaffold. BioMed Research International, 2018, 2018, 1-10.	1.9	6
35	Hypoxia Preconditioning of Human MSCs: a Direct Evidence of HIF-1α and Collagen Type XV Correlation. Cellular Physiology and Biochemistry, 2018, 51, 2237-2249.	1.6	27
36	Performance of nasal chondrocytes in an osteoarthritic environment. Osteoarthritis and Cartilage, 2018, 26, S37-S38.	1.3	4

#	Article	IF	CITATIONS
37	Differential effects of microfratured adipose tissue compared to isolated mesenchymal stem cells co-cultured with osteoarthritic synoviocytes. Osteoarthritis and Cartilage, 2018, 26, S150-S151.	1.3	1
38	Immunoelectron microscopic localization of Collagen type XV during human mesenchymal stem cells mineralization. Connective Tissue Research, 2018, 59, 42-45.	2.3	7
39	Clinical and Biological Signature of Osteochondritis Dissecans in a Cross-Sectional Study. BioMed Research International, 2018, 2018, 1-9.	1.9	0
40	Distinctive expression pattern of cystathionineâ€Î²â€synthase and cystathionineâ€Î³â€lyase identifies mesenchymal stromal cells transition to mineralizing osteoblasts. Journal of Cellular Physiology, 2017, 232, 3574-3585.	4.1	19
41	Adipose stromal cells mediated switching of the pro-inflammatory profile of M1-like macrophages is facilitated by PGE2: inÂvitro evaluation. Osteoarthritis and Cartilage, 2017, 25, 1161-1171.	1.3	111
42	Collagen type XV and the â€~osteogenic status'. Journal of Cellular and Molecular Medicine, 2017, 21, 2236-2244.	3.6	26
43	A Novel H2S-releasing Amino-Bisphosphonate which combines bone anti-catabolic and anabolic functions. Scientific Reports, 2017, 7, 11940.	3.3	33
44	AB0064â€Adipose stromal cells exert specific effects on osteoarthritic synovial macrophages. , 2017, , .		0
45	Thrombospondin-1 Partly Mediates the Cartilage Protective Effect of Adipose-Derived Mesenchymal Stem Cells in Osteoarthritis. Frontiers in Immunology, 2017, 8, 1638.	4.8	31
46	Focal Defects of the Knee Articular Surface: Evidence of a Regenerative Potential Pattern in Osteochondritis Dissecans and Degenerative Lesions. BioMed Research International, 2017, 2017, 1-9.	1.9	3
47	Lenalidomide increases human dendritic cell maturation in multiple myeloma patients targeting monocyte differentiation and modulating mesenchymal stromal cell inhibitory properties. Oncotarget, 2017, 8, 53053-53067.	1.8	27
48	The expression of cystathionine gamma-lyase is regulated by estrogen receptor alpha in human osteoblasts. Oncotarget, 2017, 8, 101686-101696.	1.8	18
49	T cell subsets differently regulate osteogenic differentiation of human mesenchymal stromal cells <i>in vitro</i> . Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 305-314.	2.7	26
50	Hydrogen Sulfide Is a Novel Regulator of Bone Formation Implicated in the Bone Loss Induced by Estrogen Deficiency. Journal of Bone and Mineral Research, 2016, 31, 949-963.	2.8	91
51	Adipose Mesenchymal Stromal Cell-Based Therapy for Severe Osteoarthritis of the Knee: A Phase I Dose-Escalation Trial. Stem Cells Translational Medicine, 2016, 5, 847-856.	3.3	389
52	Complement factor expression in osteoarthritis joint compartments. Osteoarthritis and Cartilage, 2016, 24, S383-S384.	1.3	4
53	Characterization of synovial-derived cells from ostheoarthritic synovium: evidence that macrophages are key effector cells. Osteoarthritis and Cartilage, 2016, 24, S534.	1.3	0
54	From osteoarthritic synovium to synovial-derived cells characterization: synovial macrophages are key effector cells. Arthritis Research and Therapy, 2016, 18, 83.	3.5	82

#	Article	IF	CITATIONS
55	Specific inductive potential of a novel nanocomposite biomimetic biomaterial for osteochondral tissue regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 374-391.	2.7	20
56	Lenalidomide Increases Human Dendritic Cell Maturation in Multiple Myeloma Modulating Both Monocyte Differentiation and Mesenchymal Stromal Cell Inhibitory Properties through Ikaros and Casein Kinase 1 Degradation, Respectively. Blood, 2016, 128, 4464-4464.	1.4	0
57	Osteogenic differentiation of human MSCs: Specific occupancy of the mitochondrial DNA by NFATc1 transcription factor. International Journal of Biochemistry and Cell Biology, 2015, 64, 212-219.	2.8	27
58	Lack of anti-inflammatory and anti-catabolic effects on basal inflamed osteoarthritic chondrocytes or synoviocytes by adipose stem cell-conditioned medium. Osteoarthritis and Cartilage, 2015, 23, 2045-2057.	1.3	19
59	Slug transcription factor and nuclear Lamin B1 are upregulated in osteoarthritic chondrocytes. Osteoarthritis and Cartilage, 2015, 23, 1226-1230.	1.3	5
60	Adipose stromal cells effects on osteoarthritic synoviocytes are dependent by macrophages. Osteoarthritis and Cartilage, 2015, 23, A383.	1.3	0
61	Effect of growth hormone and hyaluronan amide derivative on human osteoarthritic chondrocytes. Osteoarthritis and Cartilage, 2015, 23, A163.	1.3	0
62	Novel nano-composite biomimetic biomaterial allows chondrogenic and osteogenic differentiation of bone marrow concentrate derived cells. Journal of Materials Science: Materials in Medicine, 2015, 26, 173.	3.6	18
63	Age-independent effects of hyaluronan amide derivative and growth hormone on human osteoarthritic chondrocytes. Connective Tissue Research, 2015, 56, 440-451.	2.3	4
64	Chondrogenic potential of human mesenchymal stem cells and expression of Slug transcription factor. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 740-744.	2.7	3
65	Chondrogenic Potential of Slug-Depleted Human Mesenchymal Stem Cells. Tissue Engineering - Part A, 2014, 20, 2795-2805.	3.1	13
66	Is fundamental the cross talk between adipose stromal cells and osteoarthritic chondrocytes or synoviocytes to modulate their behaviour?. Osteoarthritis and Cartilage, 2014, 22, S304.	1.3	0
67	Sodium hydrosulfide inhibits the differentiation of osteoclast progenitor cells via NRF2-dependent mechanism. Pharmacological Research, 2014, 87, 99-112.	7.1	68
68	MSC based therapy for severe osteoarthritis of the knee. A phase 1 dose escalation trial. Osteoarthritis and Cartilage, 2014, 22, S442.	1.3	0
69	Adiposeâ€Derived Mesenchymal Stem Cells Exert Antiinflammatory Effects on Chondrocytes and Synoviocytes From Osteoarthritis Patients Through Prostaglandin E ₂ . Arthritis and Rheumatism, 2013, 65, 1271-1281.	6.7	205
70	Adipose mesenchymal stem cells protect chondrocytes from degeneration associated with osteoarthritis. Stem Cell Research, 2013, 11, 834-844.	0.7	143
71	Myeloma cells inhibit non-canonical wnt co-receptor ror2 expression in human bone marrow osteoprogenitor cells: effect of wnt5a/ror2 pathway activation on the osteogenic differentiation impairment induced by myeloma cells. Leukemia, 2013, 27, 451-463.	7.2	48
72	New Insights into Osteogenic and Chondrogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells and Their Potential Clinical Applications for Bone Regeneration in Pediatric Orthopaedics. Stem Cells International, 2013, 2013, 1-11.	2.5	71

#	Article	IF	CITATIONS
73	THU0038â€Histologic features of osteochondral junction in joint disorders. Annals of the Rheumatic Diseases, 2013, 71, 166.1-166.	0.9	0
74	Co-Culture of Hematopoietic Stem/Progenitor Cells with Human Osteblasts Favours Mono/Macrophage Differentiation at the Expense of the Erythroid Lineage. PLoS ONE, 2013, 8, e53496.	2.5	16
75	Antifibrotic effect of adipose stromalcells on chondrocytes from osteoarthritic patients. Annals of the Rheumatic Diseases, 2012, 71, A66.1-A66.	0.9	0
76	Extracellular calcium chronically induced human osteoblasts effects: Specific modulation of osteocalcin and collagen type XV. Journal of Cellular Physiology, 2012, 227, 3151-3161.	4.1	27
77	Role of Slug transcription factor in human mesenchymal stem cells. Journal of Cellular and Molecular Medicine, 2012, 16, 740-751.	3.6	32
78	Effect of adipose derived Stem cells injection in an experimental osteoarthritis model. Osteoarthritis and Cartilage, 2012, 20, S278-S279.	1.3	0
79	Transcription factor decoy against NFATc1 in human primary osteoblasts. International Journal of Molecular Medicine, 2011, 28, 199-206.	4.0	11
80	HOXB7 expression by myeloma cells regulates their pro-angiogenic properties in multiple myeloma patients. Leukemia, 2011, 25, 527-537.	7.2	39
81	16 ADIPOSE STROMAL CELLS DOWN-MODULATE INFLAMMATORY FACTORS IN SYNOVIOCYTES AND CHONDROCYTES FROM OSTEOARTHRITIS PATIENTS. Osteoarthritis and Cartilage, 2011, 19, S14.	1.3	Ο
82	226 ANTI-FIBROTIC EFFECT OF ADIPOSE STROMAL CELLS IN COCULTURE WITH CHONDROCYTES FROM OSTEOARTHRITIC PATIENTS. Osteoarthritis and Cartilage, 2011, 19, S110-S111.	1.3	0
83	Slug contributes to the regulation of CXCL12 expression in human osteoblasts. Experimental Cell Research, 2011, 317, 1159-1168.	2.6	14
84	T cell suppression by osteoclasts in vitro. Journal of Cellular Physiology, 2011, 226, 982-990.	4.1	43
85	Evidence of specific characteristics and osteogenic potentiality in bone cells from tibia. Journal of Cellular Physiology, 2011, 226, 2675-2682.	4.1	15
86	Comparison of alternative mesenchymal stem cell sources for cell banking and musculoskeletal advanced therapies. Journal of Cellular Biochemistry, 2011, 112, 1418-1430.	2.6	46
87	Chemical-physical properties and in vitro cell culturing of a novel biphasic bio-mimetic scaffold for osteo-chondral tissue regeneration. Journal of Biological Regulators and Homeostatic Agents, 2011, 25, S3-13.	0.7	4
88	Mechanoâ€functional assessment of human mesenchymal stem cells grown in threeâ€dimensional hyaluronanâ€based scaffolds for cartilage tissue engineering. Journal of Biomedical Materials Research - Part A, 2010, 93A, 37-45.	4.0	22
89	160 CHARACTERIZATION OF BONE CELLS FROM HEALTHY AND OSTEOARTHRITIS PATIENTS. Osteoarthritis and Cartilage, 2010, 18, S79.	1.3	0
90	Distinct transcriptional profiles characterize bone microenvironment mesenchymal cells rather than osteoblasts in relationship with multiple myeloma bone disease. Experimental Hematology, 2010, 38, 141-153.	0.4	57

#	Article	IF	CITATIONS
91	Mineralization behavior with mesenchymal stromal cells in a biomimetic hyaluronic acid-based scaffold. Biomaterials, 2010, 31, 3986-3996.	11.4	50
92	Bone osteoblastic and mesenchymal stromal cells lack primarily tumoral features in multiple myeloma patients. Leukemia, 2010, 24, 1368-1370.	7.2	8
93	Surfaceâ€dependent modulation of proliferation, bone matrix molecules, and inflammatory factors in human osteoblasts. Journal of Biomedical Materials Research - Part A, 2009, 89A, 687-696.	4.0	14
94	Gene array profile identifies collagen type XV as a novel human osteoblastâ€secreted matrix protein. Journal of Cellular Physiology, 2009, 220, 401-409.	4.1	30
95	CCL20/CCR6 chemokine/receptor expression in bone tissue from osteoarthritis and rheumatoid arthritis patients: Different response of osteoblasts in the two groups. Journal of Cellular Physiology, 2009, 221, 154-160.	4.1	23
96	Slug gene expression supports human osteoblast maturation. Cellular and Molecular Life Sciences, 2009, 66, 3641-3653.	5.4	36
97	Osteoarthritis Treated with Mesenchymal Stem Cells on Hyaluronan-Based Scaffold in Rabbit. Tissue Engineering - Part C: Methods, 2009, 15, 647-658.	2.1	127
98	Histological and immunohistochemical analysis of an allogenic bone graft engineered with autologous bone marrow mononuclear cells in the treatment of a large segmental defect of the ulna. A case report. La Chirurgia Degli Organi Di Movimento, 2008, 91, 171-175.	0.2	6
99	PKC-ζ expression is lower in osteoblasts from arthritic patients: IL1-β and TNF-α induce a similar decrease in non-arthritic human osteoblasts. Journal of Cellular Biochemistry, 2008, 103, 547-555.	2.6	8
100	In vitro immunotoxicity of ±2′-deoxy-3′-thiacytidine, a new and-HIV agent. Clinical and Experimental Immunology, 2008, 92, 455-459.	2.6	16
101	Expression of CXC Chemokines and Their Receptors Is Modulated during Chondrogenic Differentiation of Human Mesenchymal Stem Cells Grown in Three-Dimensional Scaffold: Evidence in Native Cartilage. Tissue Engineering - Part A, 2008, 14, 97-105.	3.1	28
102	CC-Chemokine Ligand 20/Macrophage Inflammatory Protein-3α and CC-Chemokine Receptor 6 Are Overexpressed in Myeloma Microenvironment Related to Osteolytic Bone Lesions. Cancer Research, 2008, 68, 6840-6850.	0.9	68
103	Traumatic Extrusion of the Talus – Delayed Re-implantation with Autologous Bone Marrow Mononuclear Cell Addition: A Case Report. Foot and Ankle International, 2008, 29, 101-104.	2.3	5
104	Expression of CXC Chemokines and Their Receptors Is Modulated during Chondrogenic Differentiation of Human Mesenchymal Stem Cells Grown in Three-Dimensional Scaffold: Evidence in Native Cartilage. Tissue Engineering, 2008, 14, 97-105.	4.6	0
105	HOXB7 Overexpression in Mesenchymal Cells Stimulates the Production of Pro-Angiogenic Molecules: Potential Role in Multiple Myeloma Associated Angiogenesis. Blood, 2008, 112, 2743-2743.	1.4	0
106	Bone Microenvironment Cells Show a Different Pattern of Gene Expression Profiling in Relationship with the Presence of Osteolytic Bone Lesions in Multiple Myeloma Patients. Blood, 2008, 112, 2740-2740.	1.4	0
107	CCL20 chemokine induces both osteoblast proliferation and osteoclast differentiation: Increased levels of CCL20 are expressed in subchondral bone tissue of rheumatoid arthritis patients. Journal of Cellular Physiology, 2007, 210, 798-806.	4.1	63
108	Macrophage Inflammatory Protein (MIP)-3α/CCL20 and Its Receptor CCR6 Are Overexpressed in the Bone Microenvironment and Involved in Osteoclast Formation in Multiple Myeloma Patients Blood, 2007, 110, 3510-3510.	1.4	1

#	Article	IF	CITATIONS
109	Gene Expression Profiling of Isolated Mesenchymal and Osteoblastic Cells Exhibits a Different Pattern of Expression in Multiple Myeloma Patients as Compared to Healthy Subjects: Potential Relationship with the Presence of Bone Lesions Blood, 2007, 110, 3513-3513.	1.4	0
110	Chondrogenic differentiation of murine and human mesenchymal stromal cells in a hyaluronic acid scaffold: Differences in gene expression and cell morphology. Journal of Biomedical Materials Research - Part A, 2006, 77A, 497-506.	4.0	29
111	CXCL12 (SDF-1) and CXCL13 (BCA-1) chemokines significantly induce proliferation and collagen type I expression in osteoblasts from osteoarthritis patients. Journal of Cellular Physiology, 2006, 206, 78-85.	4.1	79
112	Hyaluronan-based polymer scaffold modulates the expression of inflammatory and degradative factors in mesenchymal stem cells: Involvement of Cd44 and Cd54. Journal of Cellular Physiology, 2006, 207, 364-373.	4.1	90
113	Mesenchymal and Osteoblastic Cells Isolated from Multiple Myeloma Patients Reveal a Different Behavior, Phenotype and Gene Expression Profiling in Relationship with the Presence of Osteolytic Bone Lesions Blood, 2006, 108, 3511-3511.	1.4	0
114	Cellular and molecular events during chondrogenesis of human mesenchymal stromal cells grown in a three-dimensional hyaluronan based scaffold. Biomaterials, 2005, 26, 5677-5686.	11.4	117
115	Analysis of mesenchymal stem cells grown on a three-dimensional HYAFF 11®-based prototype ligament scaffold. Journal of Biomedical Materials Research - Part A, 2005, 73A, 275-283.	4.0	99
116	Quantitative immunodetection of key elements of polyphosphoinositide signal transduction in osteoblasts from arthritic patients shows a direct correlation with cell proliferation. Histochemistry and Cell Biology, 2005, 124, 131-137.	1.7	8
117	IL1β and TNFα differently modulate CXCL13 chemokine in stromal cells and osteoblasts isolated from osteoarthritis patients: evidence of changes associated to cell maturation. Experimental Gerontology, 2004, 39, 659-665.	2.8	41
118	Inhibition of CD95 apoptotic signaling by interferon-? in human osteoarthritic chondrocytes is associated with increased expression of FLICE inhibitory protein. Arthritis and Rheumatism, 2004, 50, 498-506.	6.7	14
119	Recruitment and proliferation of T lymphocytes is supported by IFN?- and TNF?-activated human osteoblasts: Involvement of CD54 (ICAM-1) and CD106 (VCAM-1) adhesion molecules and CXCR3 chemokine receptor. Journal of Cellular Physiology, 2004, 198, 388-398.	4.1	25
120	CXCL12 chemokine up-regulates bone resorption and MMP-9 release by human osteoclasts: CXCL12 levels are increased in synovial and bone tissue of rheumatoid arthritis patients. Journal of Cellular Physiology, 2004, 199, 244-251.	4.1	119
121	Age-associated changes in functional response to CXCR3 and CXCR5 chemokine receptors in human osteoblasts. Biogerontology, 2003, 4, 309-317.	3.9	12
122	IL1-? and TNF-? induce changes in the nuclear polyphosphoinositide signalling system in osteoblasts similar to that occurring in patients with rheumatoid arthritis: an immunochemical and immunocytochemical study. Histochemistry and Cell Biology, 2003, 120, 243-250.	1.7	23
123	Human osteoclasts express different CXC chemokines depending on cell culture substrate: molecular and immunocytochemical evidence of high levels of CXCL10 and CXCL12. Histochemistry and Cell Biology, 2003, 120, 391-400.	1.7	72
124	Human osteoblasts express functional CXC chemokine receptors 3 and 5: Activation by their ligands, CXCL10 and CXCL13, significantly induces alkaline phosphatase and ?-N-acetylhexosaminidase release. Journal of Cellular Physiology, 2003, 194, 71-79.	4.1	54
125	DIFFERENT CHEMOKINES ARE EXPRESSED IN HUMAN ARTHRITIC BONE BIOPSIES: IFN-Î ³ AND IL-6 DIFFERENTLY MODULATE IL-8, MCP-1 AND RANTES PRODUCTION BY ARTHRITIC OSTEOBLASTS. Cytokine, 2002, 20, 231-238.	3.2	73
126	Osteogenesis of large segmental radius defects enhanced by basic fibroblast growth factor activated bone marrow stromal cells grown on non-woven hyaluronic acid-based polymer scaffold. Biomaterials, 2002, 23, 1043-1051.	11.4	83

#	Article	IF	CITATIONS
127	Evidence for redifferentiation of human chondrocytes grown on a hyaluronan-based biomaterial (HYAFF®11): molecular, immunohistochemical and ultrastructural analysis. Biomaterials, 2002, 23, 1187-1195.	11.4	268
128	An Elevated Number of Differentiated Osteoblast Colonies Can Be Obtained from Rat Bone Marrow Stromal Cells Using a Gradient Isolation Procedure. Connective Tissue Research, 2001, 42, 49-58.	2.3	14
129	Basic fibroblast growth factor enhances in vitro mineralization of rat bone marrow stromal cells grown on non-woven hyaluronic acid based polymer scaffold. Biomaterials, 2001, 22, 2095-2105.	11.4	78
130	Paradoxical effects of tissue inhibitor of metalloproteinases 1 gene transfer in collagen-induced arthritis. Arthritis and Rheumatism, 2001, 44, 1444-1454.	6.7	47
131	Anti-Fas-induced apoptosis in chondrocytes reduced by hyaluronan: Evidence for CD44 and CD54 (intercellular adhesion molecule 1) involvement. Arthritis and Rheumatism, 2001, 44, 1800-1807.	6.7	111
132	Hyaluronan does not affect cytokine and chemokine expression in osteoarthritic chondrocytes and synoviocytes. Osteoarthritis and Cartilage, 2001, 9, 161-168.	1.3	15
133	Osteoblasts and stromal cells isolated from femora in rheumatoid arthritis (RA) and osteoarthritis (OA) patients express IL-11, leukaemia inhibitory factor and oncostatin M. Clinical and Experimental Immunology, 2000, 119, 346-353.	2.6	52
134	Chemokine expression by subchondral bone marrow stromal cells isolated from osteoarthritis (OA) and rheumatoid arthritis (RA) patients. Clinical and Experimental Immunology, 1999, 116, 371-378.	2.6	50
135	Proinflammatory cytokines and chemokine production and expression by human osteoblasts isolated from patients with rheumatoid arthritis and osteoarthritis. Journal of Rheumatology, 1999, 26, 791-9.	2.0	78
136	Expression of different chemokines by human osteosarcoma cells in response to tumor necrosis factor-alpha. Anticancer Research, 1999, 19, 3093-8.	1.1	4
137	Different pattern of cytokine production and mRNA expression by lymphoid and non-lymphoid cells isolated from human palatine tonsil. International Journal of Clinical and Laboratory Research, 1998, 28, 23-28.	1.0	4
138	Different expression pattern of cytokine receptors by human osteosarcoma cell lines International Journal of Oncology, 1998, 12, 899-903.	3.3	2
139	Epitope specificity of Th0/Th2 CD4+ T-lymphocyte clones induced by vaccination with rHBsAg vaccine. Gastroenterology, 1997, 112, 2017-2027.	1.3	41
140	A fluorescent in situ hybridization method in flow cytometry to detect HIV-1 specific RNA. Journal of Immunological Methods, 1996, 193, 167-176.	1.4	24
141	In vitro cultured stromal cells from human tonsils display a distinct phenotype and induce B cell adhesion and proliferation. European Journal of Immunology, 1996, 26, 17-27.	2.9	32
142	Transfer of HIV-1 to Human Tonsillar Stromal Cells Following Cocultivation with Infected Lymphocytes. AIDS Research and Human Retroviruses, 1994, 10, 675-682.	1.1	3
143	Ploidy disturbances as an early indicator of intrinsic malignancy in endometrial carcinoma. Cancer, 1993, 72, 165-172.	4.1	19
144	<i>In vitro</i> Toxicity of 2′,3′-Dideoxy-3′-Thiacytidine (BCH189/3TC), a New Synthetic Anti-HIV-1 Nucleoside. Antiviral Chemistry and Chemotherapy, 1992, 3, 299-303.	0.6	6

#	Article	IF	CITATIONS
145	A multifaced DNA ploidy analysis to determine ovarian carcinoma aggressiveness. Cancer, 1991, 67, 1878-1885.	4.1	14
146	"Desmoplastic―versus "classic―medulloblastoma: Comparison of DNA content, histopathology and differentiation. Virchows Archiv A, Pathological Anatomy and Histopathology, 1991, 418, 207-214.	1.4	32
147	The use of microfluorometry to study DNA in nasopharyngeal carcinomas: a possible prognostic tool?. Archives of Oto-rhino-laryngology, 1989, 246, 365-367.	0.5	Ο
148	Quantitative enzyme histochemistry of rat foetal brain and trigeminal ganglion. The Histochemical Journal, 1988, 20, 455-463.	0.6	4
149	Comparison of cytologic composition with microfluorometric DNA analysis of the glioblastoma multiforme and anaplastic astrocytoma. Cancer, 1987, 60, 59-65.	4.1	32
150	Quantitative immunodetection of key elements of polyphosphoinositide signal transduction in osteoblasts from arthritic patients shows a direct correlation with cell proliferation. Biotechnology Letters, 0, , 1-7.	2.2	0