Vivien A Sheehan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8539498/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Burden of central nervous system complications in sickle cell disease: A systematic review and metaâ€analysis. Pediatric Blood and Cancer, 2022, 69, e29493.	1.5	7
2	Comment on: Oxygen gradient ektacytometry does not predict pain in children with sickle cell anaemia. British Journal of Haematology, 2022, , .	2.5	0
3	Validation of singleâ€gene noninvasive prenatal testing for sickle cell disease. American Journal of Hematology, 2022, 97, .	4.1	9
4	Clonal Hematopoiesis and the Risk of Hematologic Malignancies after Curative Therapies for Sickle Cell Disease. Journal of Clinical Medicine, 2022, 11, 3160.	2.4	2
5	Oxygen gradient ektacytometryâ€derived biomarkers are associated with vasoâ€occlusive crises and correlate with treatment response in sickle cell disease. American Journal of Hematology, 2021, 96, E29-E32.	4.1	21
6	Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature, 2021, 590, 290-299.	27.8	1,069
7	Gene replacement of α-globin with β-globin restores hemoglobin balance in β-thalassemia-derived hematopoietic stem and progenitor cells. Nature Medicine, 2021, 27, 677-687.	30.7	51
8	Concurrent Assessment of Deformability and Adhesiveness of Sickle Red Blood Cells by Measuring Perfusion of an Adhesive Artificial Microvascular Network. Frontiers in Physiology, 2021, 12, 633080.	2.8	4
9	Effects of Genotypes and Treatment on Oxygenscan Parameters in Sickle Cell Disease. Cells, 2021, 10, 811.	4.1	10
10	Methodological aspects of oxygen gradient ektacytometry in sickle cell disease: Effects of sample storage on outcome parameters in distinct patient subgroups. Clinical Hemorheology and Microcirculation, 2021, 77, 391-394.	1.7	10
11	A polygenic score for acute vaso-occlusive pain in pediatric sickle cell disease. Blood Advances, 2021, 5, 2839-2851.	5.2	14
12	Comparisons of oxygen gradient ektacytometry parameters between sickle cell patients with or without αâ€thalassaemia. British Journal of Haematology, 2021, 195, 629-633.	2.5	3
13	Rheological Impact of GBT1118 Cessation in a Sickle Mouse Model. Frontiers in Physiology, 2021, 12, 742784.	2.8	1
14	Identification of Biomarkers That Are Associated with Clinical Complications of Hemoglobin SC Disease and Sickle Cell Anemia. Blood, 2021, 138, 962-962.	1.4	2
15	Rheological Impact of GBT1118 Cessation in a Sickle Mouse Model. Frontiers in Physiology, 2021, 12, 742784.	2.8	4
16	Methodological aspects of the oxygenscan in sickle cell disease: A need for standardization. American Journal of Hematology, 2020, 95, E5-E8.	4.1	18
17	Pediatric to Adult Transition in Sickle Cell Disease: Survey Results from Young Adult Patients. Acta Haematologica, 2020, 143, 163-175.	1.4	7
18	A novel algorithm comprehensively characterizes human RH genes using whole-genome sequencing data. Blood Advances, 2020, 4, 4347-4357.	5.2	9

#	Article	IF	CITATIONS
19	Loss-of-function genomic variants highlight potential therapeutic targets for cardiovascular disease. Nature Communications, 2020, 11, 6417.	12.8	39
20	Rheologic Assessments of Sickle Cell Patients Post Allogeneic Hematopoietic Cell Transplant. Biology of Blood and Marrow Transplantation, 2020, 26, S209.	2.0	0
21	Blood rheology biomarkers in sickle cell disease. Experimental Biology and Medicine, 2020, 245, 155-165.	2.4	14
22	The vasoâ€occlusive pain crisis in sickle cell disease: Definition, pathophysiology, and management. European Journal of Haematology, 2020, 105, 237-246.	2.2	92
23	Rheological Impact of CBT1118 Cessation in a Sickle Mouse Model. Blood, 2020, 136, 9-10.	1.4	1
24	Sickle Cell Disease in the Adolescent Female. , 2020, , 217-225.		0
25	Increase in Fetal Hemoglobin Levels in Pediatric Patients with Sickle Cell Disease after Vitamin D Replacement. Blood, 2020, 136, 28-28.	1.4	0
26	Red Cell Rheology Biomarkers to Assess Cure in Gene-Based Therapies. Blood, 2020, 136, 11-12.	1.4	0
27	Oxygen Gradient Ektacytometry-Derived Biomarkers Are Associated with the Occurrence of Cerebral Infarction, Acute Chest Syndrome and Vaso-Occlusive Crisis in Sickle Cell Disease. Blood, 2020, 136, 20-21.	1.4	0
28	A Systematic Literature Review of the Burden of Central Nervous System Complications for Patients with Sickle Cell Disease. Blood, 2020, 136, 10-10.	1.4	0
29	Validation of a Peripheral Blood-Derived Microglia-like Cell System. Blood, 2020, 136, 12-13.	1.4	Ο
30	A novel high-throughput molecular counting method with single base-pair resolution enables accurate single-gene NIPT. Scientific Reports, 2019, 9, 14382.	3.3	34
31	Highly efficient editing of theÂβ-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic Acids Research, 2019, 47, 7955-7972.	14.5	110
32	Spontaneous healing of avascular necrosis of the femoral head in sickle cell disease. American Journal of Hematology, 2019, 94, E160-E162.	4.1	6
33	End points for sickle cell disease clinical trials: patient-reported outcomes, pain, and the brain. Blood Advances, 2019, 3, 3982-4001.	5.2	51
34	Characterization of Sickling During Controlled Automated Deoxygenation with Oxygen Gradient Ektacytometry. Journal of Visualized Experiments, 2019, , .	0.3	9
35	Rheological Assessments of Sickle Cell Patients Post Allogeneic Hematopoietic Cell Transplant. Blood, 2019, 134, 996-996.	1.4	1
36	Regulation of Fetal Hemoglobin through the Insulin Signaling Pathway. Blood, 2019, 134, 811-811.	1.4	2

#	Article	IF	CITATIONS
37	Association between GLUT1 and HbF Levels in Red Blood Cells from Patients with Sickle Cell Disease. Blood, 2019, 134, 2265-2265.	1.4	3
38	KLF4 Is Needed for Optimal Hydroxyurea Induction of Gamma-Globin in K562 Cells. Blood, 2019, 134, 971-971.	1.4	0
39	Microglia-like Cells Derived from Hematopoietic Stem and Progenitor Cells Are a Model System to Investigate Chronic Pain in Sickle Cell Disease. Blood, 2019, 134, 3575-3575.	1.4	0
40	Rheological Effects of L-Glutamine in Patients with Sickle Cell Disease. Blood, 2019, 134, 3567-3567.	1.4	3
41	The Oxygenscan Provides Clinically Relevant Biomarkers for Treatment Efficacy That Are Associated with Frequency of Vaso-Occlusive Crisis in Sickle Cell Disease. Blood, 2019, 134, 2275-2275.	1.4	Ο
42	Plasma BDNF Levels Are Associated with Stroke in Children with SCD. Blood, 2019, 134, 3565-3565.	1.4	2
43	Genetic modifiers of severity in sickle cell disease. Clinical Hemorheology and Microcirculation, 2018, 68, 147-164.	1.7	16
44	A Retrospective Analysis of Sociodemographic and Hematologic Characteristics Associated With Achieving Optimal Hydroxyurea Therapy in Children With Sickle Cell Disease. Journal of Pediatric Hematology/Oncology, 2018, 40, 341-347.	0.6	0
45	Wholeâ€exome sequencing of sickle cell disease patients with hyperhemolysis syndrome suggests a role for rare variation in disease predisposition. Transfusion, 2018, 58, 726-735.	1.6	17
46	Fetal haemoglobin induction in sickle cell disease. British Journal of Haematology, 2018, 180, 189-200.	2.5	47
47	Echocardiography Differentiates Lethally Irradiated Whole-Body From Partial-Body Exposed Rats. Frontiers in Cardiovascular Medicine, 2018, 5, 138.	2.4	1
48	Metformin induces FOXO3-dependent fetal hemoglobin production in human primary erythroid cells. Blood, 2018, 132, 321-333.	1.4	46
49	The Oxygenscan: A Rapid and Reproducible Test to Determine Patient-Specific, Clinically Relevant Biomarkers of Disease Severity in Sickle Cell Anemia. Blood, 2018, 132, 2360-2360.	1.4	1
50	Precision Medicine for Sickle Cell Disease through Whole Genome Sequencing. Blood, 2018, 132, 3641-3641.	1.4	3
51	Sickle Human Umbilical Cord Derived Erythroid Progenitor Cells (S-HUDEP2): An Ideal in-Vitro System for Screening Anti-Sickling Compounds for Sickle Cell Disease. Blood, 2018, 132, 3675-3675.	1.4	0
52	Microglia-like Cells Derived from Hematopoietic Stem and Progenitor Cells Are a Model System to Investigate Chronic Pain in Sickle Cell Disease. Blood, 2018, 132, 1071-1071.	1.4	0
53	Insulin-like Growth Factor Binding Protein-3 (IGFBP3) Induces Fetal Hemoglobin in Hematopoietic Stem and Progenitor Cells from Patients with Sickle Cell Anemia. Blood, 2018, 132, 722-722.	1.4	0
54	Spontaneous Healing of Avascular Necrosis of the Femoral Head in Sickle Cell Disease. Blood, 2018, 132, 4924-4924.	1.4	0

#	Article	IF	CITATIONS
55	A Novel Next-Generation Sequencing Based Assay for Non-Invasive Prenatal Testing of Sickle Cell Disease without Paternal DNA. Blood, 2018, 132, 2369-2369.	1.4	0
56	Surgical Splenectomy Alters Red Cell Rheology in Patients with Sickle Cell Disease. Blood, 2018, 132, 1092-1092.	1.4	0
57	Engineered Human Umbilical Cord Derived Erythroid Progenitor Cells (HUDEP2) with Sickle or β-Thalassemia Mutation: An in-Vitro System for Testing Pharmacological Induction of Fetal Hemoglobin. Blood, 2018, 132, 3478-3478.	1.4	1
58	The Role of Adenosine Monophosphate Activated Protein Kinase Alpha 1 (AMPK) in Gamma-Globin Regulation. Blood, 2018, 132, 413-413.	1.4	8
59	p53 Nongenotoxic Activation and mTORC1 Inhibition Lead to Effective Combination for Neuroblastoma Therapy. Clinical Cancer Research, 2017, 23, 6629-6639.	7.0	23
60	The role of BCL11A and HMIP-2 polymorphisms on endogenous and hydroxyurea induced levels of fetal hemoglobin in sickle cell anemia patients from southern Brazil. Blood Cells, Molecules, and Diseases, 2016, 62, 32-37.	1.4	21
61	Original Research: Use of hydroxyurea and phlebotomy in pediatric patients with hemoglobin SC disease. Experimental Biology and Medicine, 2016, 241, 737-744.	2.4	10
62	Metformin Induces FOXO3-Dependent Fetal Hemoglobin Production in Primary Erythroid Cells. Blood, 2016, 128, 322-322.	1.4	4
63	Pre-Treatment Steady-State Rheology Predicts Response to Hydroxyurea in Patients with Sickle Cell Disease. Blood, 2016, 128, 3661-3661.	1.4	0
64	Pharmacological Induction of FOXO3 Is a Potential Treatment for Sickle Cell Disease. Blood, 2015, 126, 282-282.	1.4	2
65	Hepatitis C and neutropenia. Current Opinion in Hematology, 2014, 21, 58-63.	2.5	9
66	Whole Exome Sequencing Identifies Novel Genes for Fetal Hemoglobin Response to Hydroxyurea in Children with Sickle Cell Anemia. PLoS ONE, 2014, 9, e110740.	2.5	28
67	Hydroxyurea Improves Oxygen Transport Effectiveness in Sickle Cell Anemia Patients. Blood, 2014, 124, 2716-2716.	1.4	Ο
68	Genetic mapping and exome sequencing identify 2 mutations associated with stroke protection in pediatric patients with sickle cell anemia. Blood, 2013, 121, 3237-3245.	1.4	59
69	Severe Neutropenia in Patients with Chronic Hepatitis C: A Benign Condition. Acta Haematologica, 2013, 129, 96-100.	1.4	9
70	Genetic modifiers of sickle cell anemia in the BABY HUG cohort: influence on laboratory and clinical phenotypes. American Journal of Hematology, 2013, 88, 571-576.	4.1	71
71	Transcranial doppler velocity and brain MRI/MRA changes in children with sickle cell anemia on chronic transfusions to prevent primary stroke. Pediatric Blood and Cancer, 2013, 60, 1499-1502.	1.5	13
72	FOXO3 Variants Are Associated With Lower Fetal Hemoglobin Levels In Children With Sickle Cell Disease. Blood, 2013, 122, 778-778.	1.4	1

#	Article	IF	CITATIONS
73	Effect Of Genetic Modifiers Of Baseline Fetal Hemoglobin On Hydroxyurea Response In Children With Sickle Cell Disease. Blood, 2013, 122, 2216-2216.	1.4	Ο
74	Genetic Predictors of Hemoglobin F Response to Hydroxyurea in Sickle Cell Anemia. Blood, 2012, 120, 241-241.	1.4	5
75	Identification of Genetic Modifiers Associated with Risk of Stroke in Children with Sickle Cell Anemia. Blood, 2012, 120, 3228-3228.	1.4	0
76	Severe Neutropenia in Patients with Chronic Hepatitis C Not on Antiviral Therapy At the Memphis Veteran's Affairs Medical Center. Blood, 2011, 118, 4733-4733.	1.4	0