
Brian Y Chow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/853920/publications.pdf Version: 2024-02-01

RRIAN Y CHOW

#	Article	IF	CITATIONS
1	Independent optical excitation of distinct neural populations. Nature Methods, 2014, 11, 338-346.	19.0	1,879
2	High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature, 2010, 463, 98-102.	27.8	1,075
3	Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nature Neuroscience, 2014, 17, 1123-1129.	14.8	480
4	A High-Light Sensitivity Optical Neural Silencer: Development and Application to Optogenetic Control of Non-Human Primate Cortex. Frontiers in Systems Neuroscience, 2011, 5, 18.	2.5	421
5	Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis. Nature Materials, 2011, 10, 596-601.	27.5	323
6	Automated whole-cell patch-clamp electrophysiology of neurons in vivo. Nature Methods, 2012, 9, 585-587.	19.0	214
7	The Major Brain Cholesterol Metabolite 24(S)-Hydroxycholesterol Is a Potent Allosteric Modulator of <i>N</i> -Methyl-d-Aspartate Receptors. Journal of Neuroscience, 2013, 33, 17290-17300.	3.6	204
8	Functional and topological diversity of LOV domain photoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1442-51.	7.1	125
9	Optogenetics and Translational Medicine. Science Translational Medicine, 2013, 5, 177ps5.	12.4	99
10	Nanoscale Patterning on Insulating Substrates by Critical Energy Electron Beam Lithography. Nano Letters, 2006, 6, 2021-2025.	9.1	72
11	Optogenetic Control of Calcium Oscillation Waveform Defines NFAT as an Integrator of CalciumÂLoad. Cell Systems, 2016, 2, 283-288.	6.2	67
12	Directly light-regulated binding of RGS-LOV photoreceptors to anionic membrane phospholipids. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7720-E7727.	7.1	52
13	Genetically encoded molecular tools for light-driven silencing of targeted neurons. Progress in Brain Research, 2012, 196, 49-61.	1.4	43
14	Photoelectrochemical synthesis of DNA microarrays. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15219-15224.	7.1	33
15	Perfecting Imperfect "Monolayersâ€ŧ Removal of Siloxane Multilayers by CO2Snow Treatment. Langmuir, 2005, 21, 4782-4785.	3.5	29
16	An Open-Source Plate Reader. Biochemistry, 2019, 58, 468-473.	2.5	24
17	Optogenetic Rac1 engineered from membrane lipid-binding RGS-LOV for inducible lamellipodia formation. Photochemical and Photobiological Sciences, 2020, 19, 353-361.	2.9	21
18	Temperature-responsive optogenetic probes of cell signaling. Nature Chemical Biology, 2022, 18, 152-160.	8.0	21

BRIAN Y CHOW

#	Article	IF	CITATIONS
19	Solid-State Bonding Technique for Template-Stripped Ultraflat Gold Substrates. Langmuir, 2006, 22, 2437-2440.	3.5	20
20	Singleâ€Component Optogenetic Tools for Inducible RhoA GTPase Signaling. Advanced Biology, 2021, 5, e2100810.	2.5	20
21	De novo synthetic biliprotein design, assembly and excitation energy transfer. Journal of the Royal Society Interface, 2018, 15, 20180021.	3.4	18
22	Optogenetic Inhibition of Gαq Protein Signaling Reduces Calcium Oscillation Stochasticity. ACS Synthetic Biology, 2018, 7, 1488-1495.	3.8	14
23	Optically inducible membrane recruitment and signaling systems. Current Opinion in Structural Biology, 2019, 57, 84-92.	5.7	14
24	Toolbox for Exploring Modular Gene Regulation in Synthetic Biology Training. ACS Synthetic Biology, 2016, 5, 781-785.	3.8	13
25	Rational Construction of Compact <i>de Novo-</i> Designed Biliverdin-Binding Proteins. Biochemistry, 2018, 57, 6752-6756.	2.5	11
26	Synthetic Physiology. Methods in Enzymology, 2011, 497, 425-443.	1.0	10
27	Designing Single-Component Optogenetic Membrane Recruitment Systems: The Rho-Family GTPase Signaling Toolbox. ACS Synthetic Biology, 2022, 11, 515-521.	3.8	10
28	Synthetic cell-like membrane interfaces for probing dynamic protein-lipid interactions. Methods in Enzymology, 2019, 622, 249-270.	1.0	8
29	Synthetic Physiology. Science, 2011, 332, 1508-1509.	12.6	7
30	De Novo Designed Proteins for Ultrafast Detection of Membrane Potential Changes. Biophysical Journal, 2018, 114, 394a.	0.5	0
31	Computational framework for single-cell spatiotemporal dynamics of optogenetic membrane recruitment. Cell Reports Methods, 2022, , 100245.	2.9	0