Lars Bräutigam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8538047/publications.pdf Version: 2024-02-01

Ι ΔΟς ΒΟΔΌΤΙCAM

#	Article	IF	CITATIONS
1	Novel loss-of-function variant in DENND5A impedes melanosomal cargo transport and predisposes to familial cutaneous melanoma. Genetics in Medicine, 2022, 24, 157-169.	2.4	0
2	Glutaredoxin 2 promotes SP-1-dependent CSPG4 transcription and migration of wound healing NG2 glia and glioma cells: Enzymatic Taoism. Redox Biology, 2022, 49, 102221.	9.0	6
3	CCT3- <i>LINC00326</i> axis regulates hepatocarcinogenic lipid metabolism. Gut, 2022, 71, 2081-2092.	12.1	32
4	A Systematic Analysis of Metal and Metalloid Concentrations in Eight Zebrafish Recirculating Water Systems. Zebrafish, 2021, 18, 252-264.	1.1	2
5	MTH1 as a target to alleviate T cell driven diseases by selective suppression of activated T cells. Cell Death and Differentiation, 2021, , .	11.2	6
6	AXL and CAV-1 play a role for MTH1 inhibitor TH1579 sensitivity in cutaneous malignant melanoma. Cell Death and Differentiation, 2020, 27, 2081-2098.	11.2	20
7	Development of a chemical probe against NUDT15. Nature Chemical Biology, 2020, 16, 1120-1128.	8.0	14
8	Nitric oxide-dependent biodegradation of graphene oxide reduces inflammation in the gastrointestinal tract. Nanoscale, 2020, 12, 16730-16737.	5.6	26
9	Visualization of human T lymphocyte-mediated eradication of cancer cells in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22910-22919.	7.1	32
10	MutT homologue 1 (MTH1) removes N6-methyl-dATP from the dNTP pool. Journal of Biological Chemistry, 2020, 295, 4761-4772.	3.4	10
11	A Chemical Screen Identifies Compounds Limiting the Toxicity of C9ORF72 Dipeptide Repeats. Cell Chemical Biology, 2019, 26, 235-243.e5.	5.2	16
12	MGST1, a GSH transferase/peroxidase essential for development and hematopoietic stem cell differentiation. Redox Biology, 2018, 17, 171-179.	9.0	37
13	MutT homologue 1 (MTH1) catalyzes the hydrolysis of mutagenic O6-methyl-dGTP. Nucleic Acids Research, 2018, 46, 10888-10904.	14.5	13
14	An orthotopic glioblastoma animal model suitable for high-throughput screenings. Neuro-Oncology, 2018, 20, 1475-1484.	1.2	37
15	Mutations in Cancer Cause Gain of Cysteine, Histidine, and Tryptophan at the Expense of a Net Loss of Arginine on the Proteome Level. Biomolecules, 2017, 7, 49.	4.0	19
16	Oxidants and Redox Signaling: Perspectives in Cancer Therapy, Inflammation, and Plasma Medicine. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-2.	4.0	8
17	Glioblastoma and glioblastoma stem cells are dependent on functional MTH1. Oncotarget, 2017, 8, 84671-84684.	1.8	29
18	Hypoxic Signaling and the Cellular Redox Tumor Environment Determine Sensitivity to MTH1 Inhibition. Cancer Research, 2016, 76, 2366-2375.	0.9	40

Lars BrÃ**¤**tigam

#	Article	IF	CITATIONS
19	VECF-B-Neuropilin-1 signaling is spatiotemporally indispensable for vascular and neuronal development in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5944-53.	7.1	33
20	MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature, 2014, 508, 215-221.	27.8	419
21	Zebrafish heart development is regulated via glutaredoxin 2 dependent migration and survival of neural crest cells. Redox Biology, 2014, 2, 673-678.	9.0	43
22	An unusual mode of iron–sulfur-cluster coordination in a teleost glutaredoxin. Biochemical and Biophysical Research Communications, 2013, 436, 491-496.	2.1	15
23	Glutaredoxin regulates vascular development by reversible glutathionylation of sirtuin 1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20057-20062.	7.1	77
24	Vertebrate-specific glutaredoxin is essential for brain development. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20532-20537.	7.1	71