ulrich Walter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/853731/publications.pdf

Version: 2024-02-01

252 papers

21,789 citations

4960 84 h-index 9861

261 all docs

261 docs citations

261 times ranked 15995 citing authors

g-index

#	Article	IF	CITATIONS
1	Fine-Tuning of Platelet Responses by Serine/Threonine Protein Kinases and Phosphatases—Just the Beginning. Hamostaseologie, 2021, 41, 206-216.	1.9	7
2	Potential and limitations of PKA/ PKG inhibitors for platelet studies. Platelets, 2021, , 1-10.	2.3	0
3	Feedback Regulation of Syk by Protein Kinase C in Human Platelets. International Journal of Molecular Sciences, 2020, 21, 176.	4.1	11
4	The Serine/Threonine Protein Phosphatase 2A (PP2A) Regulates Syk Activity in Human Platelets. International Journal of Molecular Sciences, 2020, 21, 8939.	4.1	6
5	CD36â€fibrin interaction propagates FXIâ€dependent thrombin generation of human platelets. FASEB Journal, 2020, 34, 9337-9357.	0.5	12
6	The RhoA regulators Myo9b and GEFâ€H1 are targets of cyclic nucleotideâ€dependent kinases in platelets. Journal of Thrombosis and Haemostasis, 2020, 18, 3002-3012.	3.8	12
7	Cyclin Y Is Expressed in Platelets and Modulates Integrin Outside-in Signaling. International Journal of Molecular Sciences, 2020, 21, 8239.	4.1	4
8	The Cell Cycle Checkpoint System MAST(L)-ENSA/ARPP19-PP2A is Targeted by cAMP/PKA and cGMP/PKG in Anucleate Human Platelets. Cells, 2020, 9, 472.	4.1	16
9	cAMP- and cGMP-elevating agents inhibit GPIbα-mediated aggregation but not GPIbα-stimulated Syk activation in human platelets. Cell Communication and Signaling, 2019, 17, 122.	6.5	14
10	The Direct Thrombin Inhibitors Dabigatran and Lepirudin Inhibit GPlb $\hat{\bf l}\pm$ -Mediated Platelet Aggregation. Thrombosis and Haemostasis, 2019, 119, 916-929.	3.4	14
11	The Microbiota Promotes Arterial Thrombosis in Low-Density Lipoprotein Receptor-Deficient Mice. MBio, 2019, 10, .	4.1	50
12	New Insights into Platelet Signalling Pathways by Functional and Proteomic Approaches. Hamostaseologie, 2019, 39, 140-151.	1.9	9
13	Effects of the NO/soluble guanylate cyclase/cGMP system on the functions of human platelets. Nitric Oxide - Biology and Chemistry, 2018, 76, 71-80.	2.7	77
14	Hypoxia evokes increased PDI and PDIA6 expression in the infarcted myocardium of ex-germ-free and conventionally-raised mice. Biology Open, 2018, 8, .	1.2	12
15	Temporal quantitative phosphoproteomics of ADP stimulation reveals novel central nodes in platelet activation and inhibition. Blood, 2017, 129, e1-e12.	1.4	97
16	Platelet-localized FXI promotes a vascular coagulation-inflammatory circuit in arterial hypertension. Science Translational Medicine, 2017, 9, .	12.4	84
17	Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2. Blood, 2017, 130, 542-553.	1.4	119
18	Hypoxia impairs agonist-induced integrin \hat{l} ±llb \hat{l} 23 activation and platelet aggregation. Scientific Reports, 2017, 7, 7621.	3.3	16

#	Article	IF	CITATIONS
19	Protein kinase A activation by the anti-cancer drugs ABT-737 and thymoquinone is caspase-3-dependent and correlates with platelet inhibition and apoptosis. Cell Death and Disease, 2017, 8, e2898-e2898.	6.3	23
20	Alterations of the platelet proteome in type I Glanzmann thrombasthenia caused by different homozygous delG frameshift mutations in ITGA2B. Thrombosis and Haemostasis, 2017, 117, 556-569.	3.4	23
21	Erythrocytes do not activate purified and platelet soluble guanylate cyclases even in conditions favourable for NO synthesis. Cell Communication and Signaling, 2016, 14, 16.	6. 5	22
22	Vasodilator-Stimulated Phosphoprotein (VASP)-dependent and -independent pathways regulate thrombin-induced activation of Rap1b in platelets. Cell Communication and Signaling, 2016, 14, 21.	6.5	28
23	Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Pharmacology & Erythrocytes do not produce biologically active NO. BMC Ph	2.4	0
24	The sGC stimulator riociguat inhibits platelet function in washed platelets but not in whole blood. British Journal of Pharmacology, 2015, 172, 5199-5210.	5 . 4	25
25	Anti-Inflammatory and Anti-Thrombotic Effects of the Fungal Metabolite Galiellalactone in Apolipoprotein E-Deficient Mice. PLoS ONE, 2015, 10, e0130401.	2.5	9
26	Rationale and design of three observational, prospective cohort studies including biobanking to evaluate and improve diagnostics, management strategies and risk stratification in venous thromboembolism: the <i>VTEval Project</i> . BMJ Open, 2015, 5, e008157.	1.9	19
27	Quality of oral anticoagulation with phenprocoumon in regular medical care and its potential for improvement in a telemedicine-based coagulation service $\hat{a} \in \text{``fresults}$ from the prospective, multi-center, observational cohort study thrombEVAL. BMC Medicine, 2015, 13, 14.	5 . 5	47
28	Platelet-Localized FXI Promotes a Glycoprotein Ib Alpha Dependent Feedback Loop in Arterial Hypertension and Vascular Inflammation. Blood, 2015, 126, 2192-2192.	1.4	0
29	Gut Microbial Colonization Orchestrates TLR2 Expression, Signaling and Epithelial Proliferation in the Small Intestinal Mucosa. PLoS ONE, 2014, 9, e113080.	2.5	81
30	What Can Proteomics Tell Us About Platelets?. Circulation Research, 2014, 114, 1204-1219.	4. 5	97
31	Reciprocal regulation of human platelet function by endogenous prostanoids and through multiple prostanoid receptors. European Journal of Pharmacology, 2014, 740, 15-27.	3 . 5	25
32	Time-resolved characterization of cAMP/PKA-dependent signaling reveals that platelet inhibition is a concerted process involving multiple signaling pathways. Blood, 2014, 123, e1-e10.	1.4	80
33	Echicetin Coated Polystyrene Beads: A Novel Tool to Investigate GPIb-Specific Platelet Activation and Aggregation. PLoS ONE, 2014, 9, e93569.	2.5	9
34	Dysfunctional nitric oxide signalling increases risk of myocardial infarction. Nature, 2013, 504, 432-436.	27.8	230
35	Differential regulation of platelet inhibition by cGMP- and cAMP-dependent protein kinases. BMC Pharmacology & Discology, 2013, 14, .	2.4	0
36	Platelet inhibitory effects of the NO independent sGC stimulator riociguat (Bay 63-2561). BMC Pharmacology & Docing (Bay 63-2561). BMC	2.4	0

#	Article	IF	Citations
37	Response: platelet transcriptome and proteomeâ€"relation rather than correlation. Blood, 2013, 121, 5257-5258.	1.4	21
38	Differential roles of cAMP and cGMP in megakaryocyte maturation and platelet biogenesis. Experimental Hematology, 2013, 41, 91-101.e4.	0.4	17
39	Phosphorylation of CalDAGâ€GEFI by protein kinase A prevents Rap1b activation. Journal of Thrombosis and Haemostasis, 2013, 11, 1574-1582.	3.8	41
40	Deciphering of <scp>ADP</scp> â€induced, phosphotyrosineâ€dependent signaling networks in human platelets by Srcâ€homology 2 region (SH2)â€profiling. Proteomics, 2013, 13, 1016-1027.	2.2	16
41	Dual role of the p38 MAPK/cPLA 2 pathway in the regulation of platelet apoptosis induced by ABT-737 and strong platelet agonists. Cell Death and Disease, 2013, 4, e931-e931.	6.3	41
42	Immune escape of AKT overexpressing ovarian cancer cells. International Journal of Oncology, 2013, 42, 1630-1635.	3.3	13
43	Soluble guanylyl cyclase is the only enzyme responsible for cyclic guanosine monophosphate synthesis in human platelets. Thrombosis and Haemostasis, 2013, 109, 973-975.	3.4	10
44	Does the NO/sGC/cGMP/PKG pathway play a stimulatory role in platelets?. Blood, 2012, 119, 5335-5336.	1.4	11
45	The oligopeptide DTâ€2 is a specific PKG I inhibitor only <i>in vitro</i> , not in living cells. British Journal of Pharmacology, 2012, 167, 826-838.	5.4	17
46	Low angle light scattering analysis: a novel quantitative method for functional characterization of human and murine platelet receptors. Clinical Chemistry and Laboratory Medicine, 2012, 50, 1253-1262.	2.3	28
47	The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood, 2012, 120, e73-e82.	1.4	623
48	The Thr715Pro variant impairs terminal glycosylation of P-selectin. Thrombosis and Haemostasis, 2012, 108, 963-972.	3.4	10
49	Downregulation of AKT reverses platinum resistance of human ovarian cancers in vitro. Oncology Reports, 2012, 28, 2023-2028.	2.6	35
50	The thrombin inhibitors hirudin and Refludan \hat{A}^{\otimes} activate the soluble guanylyl cyclase and the cGMP pathway in washed human platelets. Thrombosis and Haemostasis, 2012, 107, 521-529.	3.4	10
51	The new INNOVANCE® PFA P2Y cartridge is sensitive to the detection of the P2Y12receptor inhibition. Platelets, 2011, 22, 19-25.	2.3	41
52	Differentiation of cGMP-dependent and -independent nitric oxide effects on platelet apoptosis and reactive oxygen species production using platelets lacking soluble guanylyl cyclase. Thrombosis and Haemostasis, 2011, 106, 922-933.	3.4	42
53	Evidence for anti-angiogenic and pro-survival functions of the cerebral cavernous malformation protein 3. Neurogenetics, 2011, 12, 83-86.	1.4	35
54	Specific PKG inhibitors: do they really exist?. BMC Pharmacology, 2011, 11, .	0.4	O

#	Article	IF	Citations
55	Vasodilatorâ€stimulated phosphoprotein deficiency potentiates PARâ€1â€induced increase in endothelial permeability in mouse lungs. Journal of Cellular Physiology, 2011, 226, 1255-1264.	4.1	7
56	Phosphorylation of Vasodilator-Stimulated Phosphoprotein Prevents Platelet-Neutrophil Complex Formation and Dampens Myocardial Ischemia-Reperfusion Injury. Circulation, 2011, 123, 2579-2590.	1.6	55
57	The preanalytical influence of two different mechanical transport systems on laboratory analysis. Clinical Chemistry and Laboratory Medicine, 2011, 49, 1379-1382.	2.3	20
58	Identification of SPRED2 (Sprouty-related Protein with EVH1 Domain 2) as a Negative Regulator of the Hypothalamic-Pituitary-Adrenal Axis. Journal of Biological Chemistry, 2011, 286, 9477-9488.	3.4	13
59	VASP phosphorylation at serine239 regulates the effects of NO on smooth muscle cell invasion and contraction of collagen. Journal of Cellular Physiology, 2010, 222, 230-237.	4.1	16
60	Functional variants of <i>TSPAN8</i> are associated with bipolar disorder and schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 967-972.	1.7	18
61	A protein phosphorylation-based assay for screening and monitoring of drugs modulating cyclic nucleotide pathways. Analytical Biochemistry, 2010, 407, 261-269.	2.4	12
62	Deficiency of Vasodilator-Stimulated Phosphoprotein (VASP) Increases Blood-Brain-Barrier Damage and Edema Formation after Ischemic Stroke in Mice. PLoS ONE, 2010, 5, e15106.	2.5	12
63	Characterization of a Novel Interaction Between Vasodilator-Stimulated Phosphoprotein and Abelson Interactor 1 in Human Platelets: A Concerted Computational and Experimental Approach. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 843-850.	2.4	11
64	Prostacyclin receptor stimulation facilitates detection of human platelet P2Y12receptor inhibition by the PFA-100® system. Platelets, 2010, 21, 112-116.	2.3	7
65	Detection of serum free light chains: the problem with antigen excess. Clinical Chemistry and Laboratory Medicine, 2010, 48, 1419-1422.	2.3	30
66	Vasodilator-Stimulated Phosphoprotein Regulates Inside-Out Signaling of \hat{l}^2 2 Integrins in Neutrophils. Journal of Immunology, 2010, 184, 6575-6584.	0.8	19
67	Platelet proinflammatory activity in clinically stable patients with CF starts in early childhood. Journal of Cystic Fibrosis, 2010, 9, 179-186.	0.7	10
68	Thrombin and Collagen Induce a Feedback Inhibitory Signaling Pathway in Platelets Involving Dissociation of the Catalytic Subunit of Protein Kinase A from an NFκB-IκB Complex. Journal of Biological Chemistry, 2010, 285, 18352-18363.	3.4	128
69	cGMP and PKG Signaling in Platelets. , 2010, , 1563-1567.		0
70	Normal filopodia extension in VASP-deficient platelets upon activation by adhesive matrices or soluble agonists. Thrombosis and Haemostasis, 2009, 102, 792-794.	3.4	3
71	Inflammationâ€associated repression of vasodilatorâ€stimulated phosphoprotein (VASP) reduces alveolarâ€capillary barrier function during acute lung injury. FASEB Journal, 2009, 23, 4244-4255.	0.5	41
72	NO inhibits platelet apoptosis by cGMP-dependent and-independent pathways. BMC Pharmacology, 2009, 9, .	0.4	0

#	Article	IF	CITATIONS
73	Cross-talk of inhibitory and stimulatory signalling pathways of human platelets. BMC Pharmacology, 2009, 9, .	0.4	О
74	Phosphatidylserine surface expression and integrin $\hat{l}\pm llb\hat{l}^23$ activity on thrombin/convulxin stimulated platelets/particles of different sizes. British Journal of Haematology, 2009, 144, 591-602.	2.5	22
75	Insulin inhibition of platelet-endothelial interaction is mediated by insulin effects on endothelial cells without direct effects on platelets: reply to a rebuttal. Journal of Thrombosis and Haemostasis, 2009, 7, 371-373.	3.8	1
76	Platelet membrane proteomics: a novel repository for functional research. Blood, 2009, 114, e10-e19.	1.4	114
77	Effects of oral niacin on endothelial dysfunction in patients with coronary artery disease: Results of the randomized, double-blind, placebo-controlled INEF study. Atherosclerosis, 2009, 204, 216-221.	0.8	77
78	cGMP and cGMP-Dependent Protein Kinase in Platelets and Blood Cells. Handbook of Experimental Pharmacology, 2009, , 533-548.	1.8	86
79	Insulin inhibition of plateletâ€endothelial interaction is mediated by insulin effects on endothelial cells without direct effects on platelets. Journal of Thrombosis and Haemostasis, 2008, 6, 856-864.	3.8	16
80	NOâ€synthaseâ€∤NOâ€independent regulation of human and murine platelet soluble guanylyl cyclase activity. Journal of Thrombosis and Haemostasis, 2008, 6, 1376-1384.	3.8	106
81	Effect of chronic treatment with acetylsalicylic acid and clopidogrel on atheroprogression and atherothrombosis in ApoE-deficient mice in vivo. Thrombosis and Haemostasis, 2008, 99, 190-195.	3.4	46
82	Cyclic Nucleotide-Regulated Proliferation and Differentiation Vary in Human Hematopoietic Progenitor Cells Derived from Healthy Persons, Tumor Patients, and Chronic Myelocytic Leukemia Patients. Stem Cells and Development, 2008, 17, 81-92.	2.1	20
83	Prostaglandin-induced VASP phosphorylation controls αII-spectrin breakdown in apoptotic cells. International Immunopharmacology, 2008, 8, 319-324.	3.8	10
84	Use of functional highly purified human platelets for the identification of new proteins of the IPP signaling pathway. Thrombosis Research, 2008, 122, 59-68.	1.7	23
85	Phosphoproteome of Resting Human Platelets. Journal of Proteome Research, 2008, 7, 526-534.	3.7	154
86	A single loading dose of clopidogrel causes dose-dependent improvement of endothelial dysfunction in patients with stable coronary artery disease: Results of a double-blind, randomized study. Atherosclerosis, 2008, 196, 689-695.	0.8	75
87	Platelet Protein Interactions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1326-1331.	2.4	70
88	The role of VASP in regulation of cAMP- and Rac 1-mediated endothelial barrier stabilization. American Journal of Physiology - Cell Physiology, 2008, 294, C178-C188.	4.6	86
89	Cytoskeleton assembly at endothelial cell–cell contacts is regulated by αII-spectrin–VASP complexes. Journal of Cell Biology, 2008, 180, 205-219.	5.2	110
90	ADP-induced platelet aggregation frequently fails to detect impaired clopidogrel-responsiveness in patients with coronary artery disease compared to a P2Y12-specific assay. Thrombosis and Haemostasis, 2008, 100, 618-625.	3.4	28

#	Article	IF	Citations
91	AMP-activated Protein Kinase Impairs Endothelial Actin Cytoskeleton Assembly by Phosphorylating Vasodilator-stimulated Phosphoprotein. Journal of Biological Chemistry, 2007, 282, 4601-4612.	3.4	95
92	Enhanced N-Glycosylation Site Analysis of Sialoglycopeptides by Strong Cation Exchange Prefractionation Applied to Platelet Plasma Membranes. Molecular and Cellular Proteomics, 2007, 6, 1933-1941.	3.8	76
93	Dynamic Interaction between Src and C-terminal Src Kinase in Integrin αIIbβ3-mediated Signaling to the Cytoskeleton. Journal of Biological Chemistry, 2007, 282, 33623-33631.	3.4	16
94	Thrombin stimulation of p38 MAP kinase in human platelets is mediated by ADP and thromboxane A2 and inhibited by cGMP/cGMP-dependent protein kinase. Blood, 2007, 109, 616-618.	1.4	45
95	Decreased platelet reactivity identified by whole blood flow cytometry in Fanconi anaemia patients. Thrombosis and Haemostasis, 2007, 98, 1291-1297.	3.4	2
96	Getting a first clue about SPRED functions. BioEssays, 2007, 29, 897-907.	2.5	97
97	NO/cGMP/PKG pathway in platelets: inhibitory but not stimulatory. BMC Pharmacology, 2007, 7, .	0.4	0
98	Hearing development and spiral ganglion neurite growth in VASP deficient mice. Brain Research, 2007, 1178, 73-82.	2.2	7
99	Platelet regulation by NO/cGMP signaling and NAD(P)H oxidase-generated ROS. Blood Cells, Molecules, and Diseases, 2006, 36, 166-170.	1.4	47
100	Analysis of SAGE data in human platelets: Features of the transcriptome in an anucleate cell. Thrombosis and Haemostasis, 2006, 95, 643-651.	3.4	79
101	PKCδ regulates collagen-induced platelet aggregation through inhibition of VASP-mediated filopodia formation. Blood, 2006, 108, 4035-4044.	1.4	99
102	A neuronal nitric oxide synthase (NOS-I) haplotype associated with schizophrenia modifies prefrontal cortex function. Molecular Psychiatry, 2006, 11, 286-300.	7.9	204
103	Tissue-specific Spred-2 promoter activity characterized by a gene trap approach. Gene Expression Patterns, 2006, 6, 247-255.	0.8	16
104	Regulation of aldosterone production from zona glomerulosa cells by ANG II and cAMP: evidence for PKA-independent activation of CaMK by cAMP. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E423-E433.	3. 5	33
105	Elucidation of N-Glycosylation Sites on Human Platelet Proteins. Molecular and Cellular Proteomics, 2006, 5, 226-233.	3.8	137
106	Platelets promote coagulation factor XII-mediated proteolytic cascade systems in plasma. Biological Chemistry, 2006, 387, 173-178.	2.5	53
107	Delayed Formation of Actin Filaments in the Outer Pillar Head Plate of VASP–/– Mice. Cells Tissues Organs, 2006, 184, 88-95.	2.3	3
108	The VASP-Spred-Sprouty Domain Puzzle. Journal of Biological Chemistry, 2006, 281, 36477-36481.	3.4	28

#	Article	IF	CITATIONS
109	Interaction of Vasodilatorâ€stimulated phosphoprotein (VASP) with αIIâ€5pectrin is crucial for the cAMPâ€dependent regulation of cortical actin dynamics. FASEB Journal, 2006, 20, A103.	0.5	1
110	Spredâ€2â€deficiency results in dwarfism and kidney failure. FASEB Journal, 2006, 20, A544.	0.5	0
111	PKCÎ [*] Regulates Platelet Activity through the Inhibition of VASP-Mediated Filopodia Formation Blood, 2006, 108, 1513-1513.	1.4	0
112	Analysis of SAGE data in human platelets: features of the transcriptome in an anucleate cell. Thrombosis and Haemostasis, 2006, 95, 643-51.	3.4	26
113	High factor VIII levels in venous thromboembolism show linkage to imprinted loci on chromosomes 5 and 11. Blood, 2005, 105, 638-644.	1.4	34
114	Platelet NAD(P)H-oxidase–generated ROS production regulates αIIbβ3-integrin activation independent of the NO/cGMP pathway. Blood, 2005, 106, 2757-2760.	1.4	195
115	Differential effects of diabetes on the expression of the gp91phox homologues nox1 and nox4. Free Radical Biology and Medicine, 2005, 39, 381-391.	2.9	115
116	Inhibition of agonist-stimulated aldosterone production from adrenal zona glomerulosa cells by ANP is mediated by GC-A. BMC Pharmacology, 2005, 5, P19.	0.4	0
117	In vivo modulation of vasodilator stimulated phosphoprotein functions by phosphorylation. BMC Pharmacology, 2005, 5, P4.	0.4	0
118	Functional role of cGMP-dependent VASP phosphorylation in vascular cells. BMC Pharmacology, 2005, 5, S24.	0.4	0
119	Tracking functions of cGMP-dependent protein kinases (cGK). Frontiers in Bioscience - Landmark, 2005, 10, 1313.	3.0	61
120	Chorioamnionitis is associated with increased CD40L expression on cord blood platelets. Thrombosis and Haemostasis, 2005, 94, 1219-1223.	3.4	7
121	Understanding platelets. Thrombosis and Haemostasis, 2005, 94, 916-925.	3.4	43
122	Are Glucokinase Mutations Associated with Low Triglycerides?. Clinical Chemistry, 2005, 51, 791-793.	3.2	10
123	Gene Disruption of Spred-2 Causes Dwarfism. Journal of Biological Chemistry, 2005, 280, 28572-28580.	3.4	49
124	Vasodilator-Stimulated Phosphoprotein–Deficient Mice Demonstrate Increased Platelet Activation but Improved Renal Endothelial Preservation and Regeneration in Passive Nephrotoxic Nephritis. Journal of the American Society of Nephrology: JASN, 2005, 16, 986-996.	6.1	25
125	Real-time Monitoring of the PDE2 Activity of Live Cells. Journal of Biological Chemistry, 2005, 280, 1716-1719.	3.4	122
126	Monitoring of Clopidogrel Action: Comparison of Methods. Clinical Chemistry, 2005, 51, 957-965.	3.2	165

#	Article	IF	CITATIONS
127	The Human Platelet Membrane Proteome Reveals Several New Potential Membrane Proteins. Molecular and Cellular Proteomics, 2005, 4, 1754-1761.	3.8	143
128	Neonatal platelets from cord blood and peripheral blood. Platelets, 2005, 16, 203-210.	2.3	108
129	Presynaptic and Postsynaptic Roles of NO, cGK, and RhoA in Long-Lasting Potentiation and Aggregation of Synaptic Proteins. Neuron, 2005, 45, 389-403.	8.1	193
130	High factor VIII (FVIII) levels in venous thromboembolism: role of unbound FVIII. Thrombosis and Haemostasis, 2004, 92, 42-46.	3.4	52
131	Variable extent of clopidogrel responsiveness in patients after coronary stenting. Thrombosis and Haemostasis, 2004, 92, 1201-1206.	3.4	67
132	Impaired platelet responses to clopidogrel and ticlopidine in a patient with recurrent coronary stent stenosis. Thrombosis and Haemostasis, 2004, 92, 1446-1447.	3.4	4
133	Vasodilator-Stimulated Phosphoprotein Regulates Proliferation and Growth Inhibition by Nitric Oxide in Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1403-1408.	2.4	90
134	The VASP tetramerization domain is a right-handed coiled coil based on a 15-residue repeat. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17027-17032.	7.1	104
135	Vasodilator-stimulated Phosphoprotein Activation of Serum-response Element-dependent Transcription Occurs Downstream of RhoA and Is Inhibited by cGMP-dependent Protein Kinase Phosphorylation. Journal of Biological Chemistry, 2004, 279, 10397-10407.	3.4	41
136	Alternative Approach for Rapid and Reliable Single-Nucleotide Polymorphism Typing with Double Restriction Mutagenesis Primer PCR. Clinical Chemistry, 2004, 50, 2376-2378.	3.2	2
137	Letter to the Editor:1H,13C and15N Resonance Assignment of the Human Spred2 EVH1 Domain. Journal of Biomolecular NMR, 2004, 29, 435-436.	2.8	4
138	Expression and subcellular localization of Spred proteins in mouse and human tissues. Histochemistry and Cell Biology, 2004, 122, 527-538.	1.7	60
139	Increased noise sensitivity and altered inner ear MENA distribution in VASP?/? mice. Cell and Tissue Research, 2004, 318, 493-502.	2.9	21
140	Potent inhibition of human platelets by cGMP analogs independent of cGMP-dependent protein kinase. Blood, 2004, 103, 2593-2600.	1.4	104
141	Quantitative analysis of the cardiac fibroblast transcriptome—implications for NO/cGMP signaling. Genomics, 2004, 83, 577-587.	2.9	21
142	Novel role of the membrane-bound chemokine fractalkine in platelet activation and adhesion. Blood, 2004, 103, 407-412.	1.4	124
143	Enhanced in vivo platelet adhesion in vasodilator-stimulated phosphoprotein (VASP)–deficient mice. Blood, 2004, 103, 136-142.	1.4	126
144	Roles of cGMP/cGMP-dependent protein kinase in platelet activation. Blood, 2004, 104, 2609-2609.	1.4	26

#	Article	IF	CITATIONS
145	Expression of VASP and zyxin in cochlear pillar cells: indication for actin-based dynamics?. Cell and Tissue Research, 2003, 311, 315-323.	2.9	10
146	Endothelium-dependent and -independent relaxation and VASP serines 157/239 phosphorylation by cyclic nucleotide-elevating vasodilators in rat aorta. Biochemical Pharmacology, 2003, 65, 397-405.	4.4	53
147	Resistance to thienopyridines: Clinical detection of coronary stent thrombosis by monitoring of vasodilatorâ€stimulated phosphoprotein phosphorylation. Catheterization and Cardiovascular Interventions, 2003, 59, 295-302.	1.7	458
148	Increased effects of C-type natriuretic peptide on contractility and calcium regulation in murine hearts overexpressing cyclic GMP-dependent protein kinase I. British Journal of Pharmacology, 2003, 140, 1227-1236.	5.4	51
149	Role for peroxynitrite in the inhibition of prostacyclin synthase in nitrate tolerance. Journal of the American College of Cardiology, 2003, 42, 1826-1834.	2.8	114
150	Physiology and Pathophysiology of Vascular Signaling Controlled by Cyclic Guanosine 3′,5′-Cyclic Monophosphate–Dependent Protein Kinase. Circulation, 2003, 108, 2172-2183.	1.6	300
151	Design of N-substituted Peptomer Ligands for EVH1 Domains. Journal of Biological Chemistry, 2003, 278, 36810-36818.	3.4	22
152	Single L-type Ca2+ channel regulation by cGMP-dependent protein kinase type I in adult cardiomyocytes from PKG I transgenic mice. Cardiovascular Research, 2003, 60, 268-277.	3.8	86
153	Cyclic GMP-Dependent Protein Kinases and the Cardiovascular System. Circulation Research, 2003, 93, 907-916.	4.5	265
154	Nebivolol Prevents Vascular NOS III Uncoupling in Experimental Hyperlipidemia and Inhibits NADPH Oxidase Activity in Inflammatory Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 615-621.	2.4	144
155	Dipyridamole Enhances NO/cGMP-Mediated Vasodilator-Stimulated Phosphoprotein Phosphorylation and Signaling in Human Platelets. Stroke, 2003, 34, 764-769.	2.0	111
156	Inhibition of platelet activation in congestive heart failure by aldosterone receptor antagonism and ACE inhibition. Thrombosis and Haemostasis, 2003, 89, 1024-1030.	3.4	57
157	Disruption of cardiac Ena-VASP protein localization in intercalated disks causes dilated cardiomyopathy. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H2471-H2481.	3.2	39
158	Functional and Biochemical Analysis of Endothelial (Dys)function and NO/cGMP Signaling in Human Blood Vessels With and Without Nitroglycerin Pretreatment. Circulation, 2002, 105, 1170-1175.	1.6	164
159	Effects of Angiotensin II Infusion on the Expression and Function of NAD(P)H Oxidase and Components of Nitric Oxide/cGMP Signaling. Circulation Research, 2002, 90, E58-65.	4.5	592
160	Increased Spreading, Rac/p21-activated Kinase (PAK) Activity, and Compromised Cell Motility in Cells Deficient in Vasodilator-stimulated Phosphoprotein (VASP). Journal of Biological Chemistry, 2002, 277, 45604-45610.	3.4	42
161	Relaxation, Equilibrium Oligomerization, and Molecular Symmetry of the VASP (336â^380) EVH2 Tetramer. Biochemistry, 2002, 41, 11143-11151.	2.5	27
162	Adverse effects of nitroglycerin treatment on endothelial function, vascular nitrotyrosine levels and cGMP-dependent protein kinase activity in hyperlipidemic Watanabe rabbits. Journal of the American College of Cardiology, 2002, 40, 1356-1363.	2.8	71

#	Article	IF	CITATIONS
163	CBS 844ins68, MTHFR TT677 and EPCR 4031ins23 genotypes in patients with deep-vein thrombosis. Thrombosis Research, 2002, 107, 13-15.	1.7	20
164	EVH1 domains: structure, function and interactions. FEBS Letters, 2002, 513, 45-52.	2.8	132
165	Normalization of nomenclature for peptide motifs as ligands of modular protein domains. FEBS Letters, 2002, 513, 141-144.	2.8	118
166	Fine mapping of the H-kininogen binding site in plasma prekallikrein apple domain 2. International Immunopharmacology, 2002, 2, 1867-1873.	3.8	17
167	Inhibition of platelet P2Y12 and α2A receptor signaling by cGMP-dependent protein kinase. Biochemical Pharmacology, 2002, 64, 433-439.	4.4	10
168	Calcium-dependent membrane association sensitizes soluble guanylyl cyclase to nitric oxide. Nature Cell Biology, 2002, 4, 307-311.	10.3	142
169	Distribution, cellular localization, and postnatal development of VASP and Mena expression in mouse tissues. Histochemistry and Cell Biology, 2001, 116, 535-543. Taming platelets with cyclic nucleotides 11 Abbreviations: ABP, actin binding protein; AC, adenylyl	1.7	47
170	cyclase; cAMP, cyclic AMP; cAMP-PK, cAMP-dependent protein kinase; cGMP, cyclic GMP; cGMP-PK, cGMP-dependent protein kinase; DAG, 1,2-diacylglycerol; EDRF, endothelium-derived relaxing factor; GC, guanylyl cyclase; GP, glycoprotein; Hsp27, heat shock protein 27; IP3, inositol 1,4,5- trisphosphate; IRAG, IP3 receptor-associated cGMP-PK substrate; MAPK, mitogen-activated protein kinase; MAPKAPK-2,	4.4	303
171	MAPK-activated. Biochemical Pharmacology, 2001, 62, 1153-1161. Actin-based motility: stop and go with Ena/VASP proteins. Trends in Biochemical Sciences, 2001, 26, 243-249.	7.5	199
172	Effects of In Vivo Nitroglycerin Treatment on Activity and Expression of the Guanylyl Cyclase and cGMP-Dependent Protein Kinase and Their Downstream Target Vasodilator-Stimulated Phosphoprotein in Aorta. Circulation, 2001, 103, 2188-2194.	1.6	132
173	A cGMP-Dependent Protein Kinase Assay for High Throughput Screening Based on Time-Resolved Fluorescence Resonance Energy Transfer. Journal of Biomolecular Screening, 2001, 6, 255-264.	2.6	23
174	Activation of cGMP-dependent Protein Kinase $\hat{\mathbb{I}}^2$ Inhibits Interleukin 2 Release and Proliferation of T Cell Receptor-stimulated Human Peripheral T Cells. Journal of Biological Chemistry, 2001, 276, 5967-5974.	3.4	70
175	Inhibition of agonist-induced p42 and p38 mitogen-activated protein kinase phosphorylation and CD40 ligand/P-selectin expression by cyclic nucleotide-regulated pathways in human platelets. Biochemical Pharmacology, 2000, 60, 1399-1407.	4.4	51
176	Dual epitope recognition by the VASP EVH1 domain modulates polyproline ligand specificity and binding affinity. EMBO Journal, 2000, 19, 4903-4914.	7.8	120
177	KT5823 Inhibits cGMP-dependent Protein Kinase Activity in Vitro but Not in Intact Human Platelets and Rat Mesangial Cells. Journal of Biological Chemistry, 2000, 275, 33536-33541.	3.4	113
178	Regulation of Human Endothelial Cell Focal Adhesion Sites and Migration by cGMP-dependent Protein Kinase I. Journal of Biological Chemistry, 2000, 275, 25723-25732.	3.4	115
179	Vasodilator-Stimulated Phosphoprotein Serine 239 Phosphorylation as a Sensitive Monitor of Defective Nitric Oxide/cGMP Signaling and Endothelial Dysfunction. Circulation Research, 2000, 87, 999-1005.	4.5	245
180	The Vasodilator-Stimulated Phosphoprotein (VASP): Target of YC-1 and Nitric Oxide Effects in Human and Rat Platelets. Journal of Cardiovascular Pharmacology, 2000, 35, 390-397.	1.9	34

#	Article	IF	Citations
181	Flow Cytometry Analysis of Intracellular VASP Phosphorylation for the Assessment of Activating and Inhibitory Signal Transduction Pathways in Human Platelets. Thrombosis and Haemostasis, 1999, 82, 1145-1152.	3.4	290
182	Stimulation of L-type Ca2+ current in human atrial myocytes by insulin. Cardiovascular Research, 1999, 44, 390-397.	3.8	42
183	Insulin stimulates the L-type Ca2+ current in rat cardiac myocytes. Cardiovascular Research, 1999, 42, 113-120.	3.8	45
184	Specific Impairment of Human Platelet P2Y AC ADP Receptor–Mediated Signaling by the Antiplatelet Drug Clopidogrel. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 2007-2011.	2.4	216
185	An α-Actinin Binding Site of Zyxin Is Essential for Subcellular Zyxin Localization and α-Actinin Recruitment. Journal of Biological Chemistry, 1999, 274, 13410-13418.	3.4	92
186	The EVH2 Domain of the Vasodilator-stimulated Phosphoprotein Mediates Tetramerization, F-actin Binding, and Actin Bundle Formation. Journal of Biological Chemistry, 1999, 274, 23549-23557.	3.4	256
187	Megakaryocyte hyperplasia and enhanced agonist-induced platelet activation in vasodilator-stimulated phosphoprotein knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 8120-8125.	7.1	220
188	Phosphorylation of vasodilator-stimulated phosphoprotein: a consequence of nitric oxide- and cGMP-mediated signal transduction in brain capillary endothelial cells and astrocytes. Molecular Brain Research, 1999, 67, 258-266.	2.3	66
189	Ligand specificity and ticlopidine effects distinguish three human platelet ADP receptors. European Journal of Pharmacology, 1998, 351, 235-246.	3.5	81
190	Functional analysis of cGMP-dependent protein kinases I and II as mediators of NO/cGMP effects. Naunyn-Schmiedeberg's Archives of Pharmacology, 1998, 358, 134-139.	3.0	126
191	Mutations in <i>Drosophila</i> i>Enabled and Rescue by Human Vasodilator-stimulated Phosphoprotein (VASP) Indicate Important Functional Roles for Ena/VASP Homology Domain 1 (EVH1) and EVH2 Domains. Molecular Biology of the Cell, 1998, 9, 2157-2171.	2.1	108
192	Overexpression of Human Endothelial Nitric Oxide Synthase in Rat Vascular Smooth Muscle Cells and in Balloon-Injured Carotid Artery. Circulation Research, 1998, 82, 862-870.	4.5	103
193	Analysis and Regulation of Vasodilator-stimulated Phosphoprotein Serine 239 Phosphorylation in Vitro and in Intact Cells Using a Phosphospecific Monoclonal Antibody. Journal of Biological Chemistry, 1998, 273, 20029-20035.	3.4	297
194	[10] Purification and assays of vasodilator-stimulated phosphoprotein. Methods in Enzymology, 1998, 298, 103-113.	1.0	2
195	YC-1 Potentiates Nitric Oxide- and Carbon Monoxide-Induced Cyclic GMP Effects in Human Platelets. Molecular Pharmacology, 1998, 54, 962-967.	2.3	177
196	cGMP Stimulation of Cystic Fibrosis Transmembrane Conductance Regulator Clâ^' Channels Co-expressed with cGMP-dependent Protein Kinase Type II but Not Type IÎ 2 . Journal of Biological Chemistry, 1997, 272, 4195-4200.	3.4	84
197	Signal Transduction by Cyclic Nucleotide-Dependent Protein Kinases in Platelets. Advances in Molecular and Cell Biology, 1997, , 311-333.	0.1	4
198	Distinct and specific functions of cGMP-dependent protein kinases. Trends in Biochemical Sciences, 1997, 22, 307-312.	7. 5	366

#	Article	IF	Citations
199	A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. EMBO Journal, 1997, 16, 5433-5444.	7.8	372
200	Cloning of the VASP (Vasodilator-Stimulated Phosphoprotein) Genes in Human and Mouse: Structure, Sequence, and Chromosomal Localization. Genomics, 1996, 36, 227-233.	2.9	12
201	VASP interaction with vinculin: a recurring theme of interactions with proline-rich motifs. FEBS Letters, 1996, 399, 103-107.	2.8	138
202	Distribution and Activation of cAMP- and cGMP-Dependent Protein Kinases in Highly Purified Human Platelet Plasma and Intracellular Membranes. Thrombosis and Haemostasis, 1996, 76, 1063-1071.	3.4	21
203	Identification, purification, and characterization of a zyxin-related protein that binds the focal adhesion and microfilament protein VASP (vasodilator-stimulated phosphoprotein) Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7956-7960.	7.1	176
204	The bacterial actin nucleator protein ActA of Listeria monocytogenes contains multiple binding sites for host microfilament proteins. Current Biology, 1995, 5, 517-525.	3.9	144
205	Dephosphorylation of the focal adhesion protein VASP in vitro and in intact human platelets. FEBS Letters, 1995, 370, 184-188.	2.8	55
206	Expression of cGMP-Dependent Protein Kinase I and Phosphorylation of Its Substrate, Vasodilator-Stimulated Phosphoprotein, in Human Endothelial Cells of Different Origin. Circulation Research, 1995, 77, 897-905.	4.5	96
207	Endogenous expression of type II cGMP-dependent protein kinase mRNA and protein in rat intestine. Implications for cystic fibrosis transmembrane conductance regulator Journal of Clinical Investigation, 1995, 96, 822-830.	8.2	123
208	Phosphorylation of Focal Adhesion Vasodilatorâ€Stimulated Phosphoprotein at Ser157 in Intact Human Platelets Correlates with Fibrinogen Receptor Inhibition. FEBS Journal, 1994, 225, 21-27.	0.2	223
209	Indirect regulation of Ca2+ entry by cAMP-dependent and cGMP-dependent protein kinases and phospholipase C in rat platelets. FEBS Journal, 1994, 223, 543-551.	0.2	43
210	NO at work. Cell, 1994, 78, 919-925.	28.9	1,519
211	Synergistic phosphorylation of the focal adhesion-associated vasodilator-stimulated phosphoprotein in intact human platelets in response to cGMP- and cAMP-elevating platelet inhibitors. Biochemical Pharmacology, 1994, 48, 1569-1575.	4.4	36
212	Cloning, expression, and in situ localization of rat intestinal cGMP-dependent protein kinase II Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 9426-9430.	7.1	145
213	The cGMP-dependent protein kinase-gene, protein, and function. Neurochemical Research, 1993, 18, 27-42.	3.3	141
214	The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochimica Et Biophysica Acta - Molecular Cell Research, 1993, 1178, 153-175.	4.1	687
215	Role of Cyclic Nucleotide-Dependent Protein Kinases and Their Common Substrate VASP in the Regulation of Human Platelets. Advances in Experimental Medicine and Biology, 1993, 344, 237-249.	1.6	88
216	Properties and Regulation of Human Platelet Cation Channels. , 1993, 66, 281-288.		6

#	Article	IF	CITATIONS
217	Role of cGMP and cGMP-dependent protein kinase in nitrovasodilator inhibition of agonist-evoked calcium elevation in human platelets Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 1031-1035.	7.1	175
218	Analysis of the functional role of cGMP-dependent protein kinase in intact human platelets using a specific activator 8-para-chlorophenylthio-cGMP. Biochemical Pharmacology, 1992, 43, 2591-2600.	4.4	144
219	HIV-1 gp120 receptor on CD4-negative brain cells activates a tyrosine kinase. Virology, 1992, 191, 765-772.	2.4	60
220	Protein phosphorylation regulated by cyclic nucleotide-dependent protein kinases in cell extracts and in intact human lymphocytes. Cellular Signalling, 1992, 4, 189-199.	3.6	13
221	Concentration and regulation of cyclic nucleotides, cyclic-nucleotide-dependent protein kinases and one of their major substrates in human platelets. Estimating the rate of cAMP-regulated and cGMP-regulated protein phosphorylation in intact cells. FEBS Journal, 1992, 205, 471-481.	0.2	158
222	Comparison of vasodilatory prostaglandins with respect to cAMP-mediated phosphorylation of a target substrate in intact human platelets. Biochemical Pharmacology, 1991, 42, 253-262.	4.4	26
223	Signal transduction by cGMP in heart. Basic Research in Cardiology, 1991, 86, 503-514.	5.9	168
224	Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 1197-1201.	7.1	452
225	Regulation of gene expression by transfected subunits of cAMP-dependent protein kinase. FEBS Journal, 1990, 188, 253-259.	0.2	20
226	Analysis, purification and properties of a 50 000-dalton membrane-associated phosphoprotein from human platelets. Journal of Chromatography A, 1990, 521, 335-343.	3.7	21
227	Inhibition of cGMP-dependent protein kinase by (Rp)-guanosine 3',5'-monophosphorothioates. FEBS Letters, 1990, 263, 47-50.	2.8	125
228	Physiological role of cGMP and cGMP-dependent protein kinase in the cardiovascular system. , 1989, 113, 41-88.		179
229	Purification of a vasodilatorâ€regulated phosphoprotein from human platelets. FEBS Journal, 1989, 185, 41-50.	0.2	143
230	Cyclic nucleotide elevating vasodilators inhibit platelet aggregation at an early step of the activation cascade. European Journal of Pharmacology, 1989, 159, 317-320.	3.5	45
231	Molecular cloning and predicted full-length amino acid sequence of the type $\hat{\mathbb{I}}^2$ isozyme of cGMP-dependent protein kinase from human placenta. FEBS Letters, 1989, 255, 321-329.	2.8	136
232	[17] Type II cAMP-dependent protein kinase regulatory subunit-binding proteins. Methods in Enzymology, 1988, 159, 183-193.	1.0	13
233	Vasodilator-stimulated protein phosphorylation in platelets is mediated by cAMP- and cGMP-dependent protein kinases. FEBS Journal, 1987, 167, 441-448.	0.2	122
234	Interaction of the Regulatory Subunit (RII) of cAMP-Dependent Protein Kinase with Tissue-Specific Binding Proteins Including Microtubule-Associated Proteins. Annals of the New York Academy of Sciences, 1986, 466, 449-452.	3.8	4

#	Article	IF	Citations
235	Immunocytochemical characterization of neuron-ricprimary cultures of embryonic rat brain cells by established neuronal and glial markers and by monospecific antisera against cyclic nucleotide-dependent protein kinases and the synaptic vesicle protein synapsin I. Brain Research, 1986, 363, 205-221.	2.2	76
236	Demonstration of cGMP-dependent protein kinase and cGMP-dependent phosphorylation in cell-free extracts of platelets. FEBS Journal, 1986, 158, 203-210.	0.2	95
237	Heterogeneous distribution of the cAMP receptor protein RII in the nervous system: evidence for its intracellular accumulation on microtubules, microtubule-organizing centers, and in the area of the Golgi complex Journal of Cell Biology, 1986, 103, 189-203.	5.2	193
238	Selective increase of R-I subunit of cyclic AMP-dependent protein kinase in glia-rich primary cultures upon treatment with dibutyryl cyclic AMP. Brain Research, 1985, 344, 322-328.	2.2	8
239	Adenosine $3\hat{a}\in^2$, $5\hat{a}\in^2$ -Monophosphate-Dependent Protein Kinase and Granulosa Cell Responsiveness to Gonadotropins*. Endocrinology, 1984, 114, 2190-2198.	2.8	42
240	Anatomy of cerebellar Purkinje cells in the rat determined by a specific immunohistochemical marker. Neuroscience, 1984, 11, 761-IN2.	2.3	249
241	Bradykinin regulates the level of guanosine 3′,5′-cyclic monophosphate (cyclic GMP) in neural cell lines. Brain Research, 1984, 290, 367-371.	2.2	60
242	High-affinity binding of the regulatory subunit (RII) of cAMP-dependent protein kinase to microtubule-associated and other cellular proteins Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 6723-6727.	7.1	178
243	[15] Photoaffinity labeling of the regulatory subunit of cAMP-dependent protein kinase. Methods in Enzymology, 1983, 99, 154-162.	1.0	32
244	Frozen tissue sections as an experimental system to reveal specific binding sites for the regulatory subunit of type II cAMP-dependent protein kinase in neurons Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 5562-5566.	7.1	74
245	Immunohistochemical localization of cyclic GMP-dependent protein kinase in mammalian brain Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 653-657.	7.1	292
246	Steroid Hormones May Regulate Autophosphorylation of Adenosine-3',5'-Monophosphate-Dependent Protein Kinase in Target Tissues. FEBS Journal, 1981, 114, 539-548.	0.2	49
247	Distribution of Cyclicâ€GMPâ€Dependent Protein Kinase in Various Rat Tissues and Cell Lines Determined by a Sensitive and Specific Radioimmunoassay. FEBS Journal, 1981, 118, 339-346.	0.2	63
248	Cyclic AMP-Dependent and Cyclic GMP-Dependent Protein Kinases of Nervous Tissue. Current Topics in Cellular Regulation, 1981, 19, 219-256.	9.6	36
249	Microinjection of catalytic subunit of cyclic AMP-dependent protein kinase enhances calcium action potentials of bag cell neurons in cell culture. Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 7487-7491.	7.1	278
250	Transfer of acetyl-units through the mitochondrial membrane: evidence for a pathway different from the citrate pathway. FEBS Letters, 1976, 63, 260-266.	2.8	10
251	Hydrogen Exchange at the beta-Carbon of Amino Acids during Transamination. FEBS Journal, 1975, 59, 395-403.	0.2	31
252	Towards an extensive proteome analysis of platelet membranes. , 0, 2005, .		O