Dai-Yin Chao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8537217/publications.pdf

Version: 2024-02-01

42 papers 6,071 citations

30 h-index 276539 41 g-index

44 all docs 44 docs citations

times ranked

44

6688 citing authors

#	Article	IF	CITATIONS
1	Decreasing nitrogen assimilation under drought stress by suppressing DST-mediated activation of Nitrate Reductase 1.2 in rice. Molecular Plant, 2022, 15, 167-178.	3.9	40
2	Phytochrome-interacting factors orchestrate hypocotyl adventitious root initiation in <i>Arabidopsis</i> . Development (Cambridge), 2022, 149, .	1.2	8
3	Sec24C mediates a Golgiâ€independent trafficking pathway that is required for tonoplast localisation of ABCC1 and ABCC2. New Phytologist, 2022, 235, 1486-1500.	3 . 5	11
4	Phytochrome B inhibits darknessâ€induced hypocotyl adventitious root formation by stabilizing IAA14 and suppressing ARF7 and ARF19. Plant Journal, 2021, 105, 1689-1702.	2.8	16
5	NPF transporters in synaptic-like vesicles control delivery of iron and copper to seeds. Science Advances, 2021, 7, eabh2450.	4.7	29
6	Long-distance blue light signalling regulates phosphate deficiency-induced primary root growth inhibition. Molecular Plant, 2021, 14, 1539-1553.	3.9	27
7	Uclacyanin Proteins Are Required for Lignified Nanodomain Formation within Casparian Strips. Current Biology, 2020, 30, 4103-4111.e6.	1.8	38
8	A rice chloroplastâ€localized ABC transporter ARG1 modulates cobalt and nickel homeostasis and contributes to photosynthetic capacity. New Phytologist, 2020, 228, 163-178.	3.5	23
9	Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences, 2020, 63, 635-674.	2.3	689
10	The ABC transporter ABCG36 is required for cadmium tolerance in rice. Journal of Experimental Botany, 2019, 70, 5909-5918.	2.4	145
11	Inositol Pyrophosphate InsP8 Acts as an Intracellular Phosphate Signal in Arabidopsis. Molecular Plant, 2019, 12, 1463-1473.	3.9	143
12	Plant evolution and environmental adaptation unveiled by long-read whole-genome sequencing of <i>Spirodela</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18893-18899.	3.3	76
13	The Gene Network That Regulates Salt Tolerance in Rice. , 2018, , 297-316.		1
14	TSC1 enables plastid development under dark conditions, contributing to rice adaptation to transplantation shock. Journal of Integrative Plant Biology, 2018, 60, 112-129.	4.1	7
15	AtHMA4 Drives Natural Variation in Leaf Zn Concentration of Arabidopsis thaliana. Frontiers in Plant Science, 2018, 9, 270.	1.7	20
16	lonomic and transcriptomic analysis provides new insight into the distribution and transport of cadmium and arsenic in rice. Journal of Hazardous Materials, 2017, 331, 246-256.	6.5	82
17	Structure and mechanism of a group-I cobalt energy coupling factor transporter. Cell Research, 2017, 27, 675-687.	5.7	44
18	A new vesicle trafficking regulator CTL1 plays a crucial role in ion homeostasis. PLoS Biology, 2017, 15, e2002978.	2.6	44

#	Article	IF	Citations
19	AtHKT1 drives adaptation of Arabidopsis thaliana to salinity by reducing floral sodium content. PLoS Genetics, 2017, 13, e1007086.	1.5	56
20	Nuclear Localised MORE SULPHUR ACCUMULATION1 Epigenetically Regulates Sulphur Homeostasis in Arabidopsis thaliana. PLoS Genetics, 2016, 12, e1006298.	1.5	81
21	OsHAC1;1 and OsHAC1;2 Function as Arsenate Reductases and Regulate Arsenic Accumulation. Plant Physiology, 2016, 172, 1708-1719.	2.3	200
22	Get More Acids for More Iron: A New Regulatory Pathway for Iron Homeostasis. Molecular Plant, 2016, 9, 498-500.	3.9	4
23	Nitrogen-use efficiency: Transport solution in rice variations. Nature Plants, 2015, 1, 15096.	4.7	7
24	Natural alleles of a proteasome $\hat{l}\pm 2$ subunit gene contribute to thermotolerance and adaptation of African rice. Nature Genetics, 2015, 47, 827-833.	9.4	265
25	Genome-wide Association Mapping Identifies a New Arsenate Reductase Enzyme Critical for Limiting Arsenic Accumulation in Plants. PLoS Biology, 2014, 12, e1002009.	2.6	227
26	Variation in Sulfur and Selenium Accumulation Is Controlled by Naturally Occurring Isoforms of the Key Sulfur Assimilation Enzyme ADENOSINE 5′-PHOSPHOSULFATE REDUCTASE2 across the Arabidopsis Species Range Â. Plant Physiology, 2014, 166, 1593-1608.	2.3	64
27	Polyploids Exhibit Higher Potassium Uptake and Salinity Tolerance in <i>Arabidopsis</i> . Science, 2013, 341, 658-659.	6.0	298
28	Sterols and sphingolipids differentially function in trafficking of the <scp>A</scp> rabidopsis <scp>ABCB</scp> 19 auxin transporter. Plant Journal, 2013, 74, 37-47.	2.8	61
29	Genome-Wide Association Studies Identify Heavy Metal ATPase3 as the Primary Determinant of Natural Variation in Leaf Cadmium in Arabidopsis thaliana. PLoS Genetics, 2012, 8, e1002923.	1.5	224
30	Rice Carotenoid \hat{l}^2 -Ring Hydroxylase CYP97A4 is Involved in Lutein Biosynthesis. Plant and Cell Physiology, 2012, 53, 987-1002.	1.5	58
31	Biodiversity of Mineral Nutrient and Trace Element Accumulation in Arabidopsis thaliana. PLoS ONE, 2012, 7, e35121.	1.1	82
32	Sphingolipids in the Root Play an Important Role in Regulating the Leaf Ionome in <i>Arabidopsis thaliana</i> ÂÂ. Plant Cell, 2011, 23, 1061-1081.	3.1	111
33	The <i>glossyhead1</i> Allele of <i>ACC1</i> Reveals a Principal Role for Multidomain Acetyl-Coenzyme A Carboxylase in the Biosynthesis of Cuticular Waxes by Arabidopsis Â. Plant Physiology, 2011, 157, 1079-1092.	2.3	62
34	Bulk Segregant Analysis Using Single Nucleotide Polymorphism Microarrays. PLoS ONE, 2011, 6, e15993.	1.1	33
35	A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes and Development, 2009, 23, 1805-1817.	2.7	504
36	OsHAL3 mediates a new pathway in the light-regulated growth of rice. Nature Cell Biology, 2009, 11, 845-851.	4.6	39

#	Article	IF	CITATION
37	Toward Understanding Molecular Mechanisms of Abiotic Stress Responses in Rice. Rice, 2008, 1, 36-51.	1.7	39
38	Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta, 2008, 228, 191-201.	1.6	239
39	Understanding Abiotic Stress Tolerance Mechanisms: Recent Studies on Stress Response in Rice. Journal of Integrative Plant Biology, 2007, 49, 742-750.	4.1	172
40	A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 2005, 37, 1141-1146.	9.4	1,229
41	Salt-responsive genes in rice revealed by cDNA microarray analysis. Cell Research, 2005, 15, 796-810.	5.7	113
42	QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theoretical and Applied Genetics, 2004, 108, 253-260.	1.8	459