List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8536910/publications.pdf Version: 2024-02-01

		117625	118850
215	4,162	34	62
papers	citations	h-index	g-index
215	215	215	3229
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Raman spectroscopy—a tool for rapid differentiation among microbes causing urinary tract infections. Analytica Chimica Acta, 2022, 1191, 339292.	5.4	17
2	Challenges on optical printing of colloidal nanoparticles. Journal of Chemical Physics, 2022, 156, 034201.	3.0	12
3	Stochastic dynamics of optically bound matter levitated in vacuum. Optica, 2021, 8, 220.	9.3	24
4	Raman Microspectroscopic Analysis of Selenium Bioaccumulation by Green Alga Chlorella vulgaris. Biosensors, 2021, 11, 115.	4.7	3
5	Optically bound matter levitated in vacuum. , 2021, , .		0
6	Optically Transportable Optofluidic Microlasers with Liquid Crystal Cavities Tuned by the Electric Field. ACS Applied Materials & Interfaces, 2021, 13, 50657-50667.	8.0	4
7	Stochastic Hopf bifurcations in vacuum optical tweezers. Physical Review A, 2021, 104, .	2.5	7
8	Vacuum optomechanics of optically levitated objects. Journal of Physics: Conference Series, 2020, 1461, 012199.	0.4	0
9	Using the transient trajectories of an optically levitated nanoparticle to characterize a stochastic Duffing oscillator. Scientific Reports, 2020, 10, 14436.	3.3	13
10	Analysis of Bacteriophage–Host Interaction by Raman Tweezers. Analytical Chemistry, 2020, 92, 12304-12311.	6.5	6
11	Coherent oscillations of a levitated birefringent microsphere in vacuum driven by nonconservative rotation-translation coupling. Science Advances, 2020, 6, eaaz9858.	10.3	30
12	Nanovortexâ€Driven Allâ€Dielectric Optical Diffusion Boosting and Sorting Concept for Labâ€onâ€aâ€Chip Platforms. Advanced Science, 2020, 7, 1903049.	11.2	49
13	Complex colloidal structures with non-linear optical properties formed in an optical trap. Optics Express, 2020, 28, 37700.	3.4	5
14	Spin-locked scattering forces in the near field of high index particles. AIP Conference Proceedings, 2020, , .	0.4	0
15	Non-conservative instabilities in optical vacuum traps. , 2020, , .		0
16	Coherent oscillations of a birefringent microsphere in vacuum optical traps. , 2020, , .		0
17	Vacuum optomechanics of optically levitated objects: determination of nonlinear properties of the optical trap. , 2020, , .		0
18	Controlled Oil/Water Partitioning of Hydrophobic Substrates Extending the Bioanalytical Applications of Droplet-Based Microfluidics. Analytical Chemistry, 2019, 91, 10008-10015.	6.5	20

#	Article	IF	CITATIONS
19	Identification of ability to form biofilm in <i>Candida parapsilosis</i> and <i>Staphylococcus epidermidis</i> by Raman spectroscopy. Future Microbiology, 2019, 14, 509-517.	2.0	16
20	Spin to orbital light momentum conversion visualized by particle trajectory. Scientific Reports, 2019, 9, 4127.	3.3	18
21	Wavelength-Dependent Optical Force Aggregation of Gold Nanorods for SERS in a Microfluidic Chip. Journal of Physical Chemistry C, 2019, 123, 5608-5615.	3.1	38
22	Surface-enhanced Raman Spectroscopy in Microfluidic Chips for Directed Evolution of Enzymes and Environmental Monitoring. , 2019, , .		0
23	Tunable Soft-Matter Optofluidic Waveguides Assembled by Light. ACS Photonics, 2019, 6, 403-410.	6.6	16
24	Optical Trapping, Optical Binding, and Rotational Dynamics of Silicon Nanowires in Counter-Propagating Beams. Nano Letters, 2019, 19, 342-352.	9.1	63
25	Perspective on light-induced transport of particles: from optical forces to phoretic motion. Advances in Optics and Photonics, 2019, 11, 577.	25.5	91
26	Optomechanical properties of optically self-arranged colloidal waveguides. Optics Letters, 2019, 44, 707.	3.3	8
27	Tunable soft-matter optofluidic waveguides assembled by light. , 2019, , .		Ο
28	Multimode fiber transmission matrix obtained with internal references. , 2019, , .		1
29	Analysis of microorganisms, chlorinated hydrocarbons and hyaluronic acid gel using Raman based optofluidic techniques and SERS. , 2019, , .		0
30	Enhancement of the †tractor-beam' pulling force on an optically bound structure. Light: Science and Applications, 2018, 7, 17135-17135.	16.6	29
31	Experimental stochastic systems based on optical forces. Journal of Physics: Conference Series, 2018, 1092, 012173.	0.4	0
32	Diffusing up the Hill: Dynamics and Equipartition in Highly Unstable Systems. Physical Review Letters, 2018, 121, 230601.	7.8	39
33	Detection of Chloroalkanes by Surface-Enhanced Raman Spectroscopy in Microfluidic Chips. Sensors, 2018, 18, 3212.	3.8	6
34	Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of E. coli under Antibiotic Stress. Sensors, 2018, 18, 1623.	3.8	34
35	Laser tweezers Raman spectroscopy of E. coli under antibiotic stress in microfluidic chips. , 2018, , .		1

#	Article	IF	CITATIONS
37	Motion of optically bound particles in tractor beam. , 2018, , .		Ο
38	Underdamped and overdamped dynamics of objects in nonlinear optical potentials. , 2018, , .		0
39	Anomalous shift of the most probable position of a particle in an unstable optically created potential. , 2018, , .		0
40	Measurement system for characterization of angular and spectral distribution of LED-based sources. , 2018, , .		0
41	Laser system for measuring MEMS relief created by the method of deep reactive ion etching. , 2018, , .		0
42	Motion of optically levitated nanoparticle in nonlinear regime. , 2018, , .		0
43	Surface-enhanced Raman spectroscopy of chloroalkanes in microfluidic chips. , 2018, , .		0
44	Thermally induced micro-motion by inflection in optical potential. Scientific Reports, 2017, 7, 1697.	3.3	18
45	Optical Binding of Nanowires. Nano Letters, 2017, 17, 3485-3492.	9.1	39
46	Omnidirectional Transport in Fully Reconfigurable Two Dimensional Optical Ratchets. Physical Review Letters, 2017, 118, 138002.	7.8	46
47	Accuracy and Mechanistic Details of Optical Printing of Single Au and Ag Nanoparticles. ACS Nano, 2017, 11, 9678-9688.	14.6	58
48	Morphological and Production Changes in Planktonic and Biofilm Cells Monitored Using SEM and Raman Spectroscopy. Microscopy and Microanalysis, 2017, 23, 1158-1159.	0.4	0
49	Rapid identification of staphylococci by Raman spectroscopy. Scientific Reports, 2017, 7, 14846.	3.3	57
50	Differentiation between <i>Staphylococcus aureus</i> and <i>Staphylococcus epidermidis</i> strains using Raman spectroscopy. Future Microbiology, 2017, 12, 881-890.	2.0	19
51	Effects of Infrared Optical Trapping on Saccharomyces cerevisiae in a Microfluidic System. Sensors, 2017, 17, 2640.	3.8	30
52	Thermal tuning of spectral emission from optically trapped liquid-crystal droplet resonators. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 1855.	2.1	13
53	Dynamics of an optically bound structure made of particles of unequal sizes. Optics Letters, 2017, 42, 1436.	3.3	13
54	Optically Trapped Droplets of Liquid Crystals as Flexible, Tunable Optofluidic Microcavities. , 2017, , .		0

#	Article	IF	CITATIONS
55	Quantitative Raman Spectroscopy Analysis of Polyhydroxyalkanoates Produced by Cupriavidus necator H16. Sensors, 2016, 16, 1808.	3.8	24
56	Chiral particles in the dual-beam optical trap. Optics Express, 2016, 24, 26382.	3.4	11
57	Noise-to-signal transition of a Brownian particle in the cubic potential: I. general theory. Journal of Optics (United Kingdom), 2016, 18, 065401.	2.2	14
58	Theoretical analysis of motion of a microparticle in an optically created cubic potential. Proceedings of SPIE, 2016, , .	0.8	0
59	Temperature-induced tuning of emission spectra of liquid-crystal optical microcavities. Proceedings of SPIE, 2016, , .	0.8	Ο
60	Optical binding of particle pairs in retro-reflected beam geometry. Proceedings of SPIE, 2016, , .	0.8	0
61	Semi-automated sorting using holographic optical tweezers remotely controlled by eye/hand tracking camera. , 2016, , .		0
62	Two-photon photopolymerization with multiple laser beams. Proceedings of SPIE, 2016, , .	0.8	0
63	Noise-to-signal transition of a Brownian particle in the cubic potential: II. optical trapping geometry. Journal of Optics (United Kingdom), 2016, 18, 065402.	2.2	11
64	Thermally induced passage and current of particles in a highly unstable optical potential. Physical Review E, 2016, 94, 042108.	2.1	12
65	Characterizing particle pairs optically bound in "tractor beam". Proceedings of SPIE, 2016, , .	0.8	0
66	Directed evolution of enzymes using microfluidic chips. , 2016, , .		0
67	Time evolution of trapped single cell microorganism. Proceedings of SPIE, 2016, , .	0.8	Ο
68	Direct measurement of the temperature profile close to an optically trapped absorbing particle. Optics Letters, 2016, 41, 870.	3.3	13
69	Holographic Raman tweezers controlled by multi-modal natural user interface. Journal of Optics (United Kingdom), 2016, 18, 015602.	2.2	12
70	Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy. Sensors, 2015, 15, 29635-29647.	3.8	32
71	Three-Dimensional Optical Trapping of a Plasmonic Nanoparticle using Low Numerical Aperture Optical Tweezers. Scientific Reports, 2015, 5, 8106.	3.3	60
72	Binding of a pair of Au nanoparticles in a wide Gaussian standing wave. Optical Review, 2015, 22, 157-161.	2.0	35

IF # ARTICLE CITATIONS Rotation of dielectric disks in focused vortex beams., 2015,,. In-situ aberration correction of Bessel beams using spatial light modulator., 2015,,. 74 1 Identification of individual biofilm-forming bacterial cells using Raman tweezers. Journal of 2.6 Biomedical Optics, 2015, 20, 051038. Non-spherical gold nanoparticles trapped in optical tweezers: shape matters. Optics Express, 2015, 23, 76 3.4 30 8179. Optical trapping in secondary maxima of focused laser beam. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 162, 114-121. 2.3 Complex rotational dynamics of multiple spheroidal particles in a circularly polarized, dual beam 78 3.4 42 trap. Optics Express, 2015, 23, 7273. 79 Time-resolved study of microorganisms by Raman spectroscopy. Proceedings of SPIE, 2015, , . 0.8 Rotational behavior of oblate golden nanoparticles in circularly polarized dual beam optical trap., 80 0 2015,,. Shape Adapted Optical Forces And Interactions., 2015, , . 82 Raman-Tweezers Optofluidic System for Automatic Analysis and Sorting of Living Cells., 2015,,. 0 Time-resolved study of microorganisms by Raman spectroscopy., 2015, , . Candida parapsilosis Biofilm Identification by Raman Spectroscopy. International Journal of 84 4.1 43 Molecular Sciences, 2014, 15, 23924-23935. Algal Biomass Analysis by Laser-Based Analytical Techniquesâ€"A Review. Sensors, 2014, 14, 17725-17752. 3.8 53 Rotation, oscillation and hydrodynamic synchronization of optically trapped oblate spheroidal 86 3.4 36 microparticles. Optics Express, 2014, 22, 16207. Optical sorting of nonspherical and living microobjects in moving interference structures. Optics Express, 2014, 22, 29746. Tunable WGM resonators from optically trapped dye doped liquid crystal emulsion droplets., 2014,,. 88 2 Manipulation of metal-dielectric core-shell particles in optical fields., 2014, , . Single-beam trapping using laser beams focused by low and high numerical apertures: angular 90 0 spectrum approach., 2014, , .

PAVEL ZEMÃINEK

#	Article	IF	CITATIONS
91	Monitoring the influence of antibiotic exposure using Raman spectroscopy. Proceedings of SPIE, 2014, , .	0.8	0
92	Anomalous behavior of a three-dimensional, optically trapped, super-paramagnetic particle. , 2014, , .		0
93	Experimental analysis of multiple-beam interference optical traps. Proceedings of SPIE, 2014, , .	0.8	0
94	Behavior of oblate spheroidal microparticles in a tightly focused optical vortex beam. Proceedings of SPIE, 2014, , .	0.8	0
95	Raman tweezers on bacteria: following the mechanisms of bacteriostatic versus bactericidal action. , 2014, , .		1
96	Reproducible and time-course study of yeast biofilm by Raman spectroscopy. Proceedings of SPIE, 2014, ,	0.8	0
97	Behaviour of a non-spherical metal nanoparticle in an optical trap. Proceedings of SPIE, 2014, , .	0.8	0
98	Micro-particles self-arrangement in shapeable counter-propagating beams. , 2014, , .		0
99	Particles in motion driven by optical binding. , 2014, , .		0
100	Optical trapping of non-spherical plasmonic nanoparticles. Proceedings of SPIE, 2014, , .	0.8	2
101	Raman tweezers in microfluidic systems for analysis and sorting of living cells. , 2014, , .		3
102	Droplet resonator based optofluidic microlasers. , 2014, , .		2
103	Raman tweezers in microfluidic systems for analysis and sorting of living cells. , 2014, , .		0
104	Liquid crystal emulsion micro-droplet WGM resonators. Proceedings of SPIE, 2014, , .	0.8	0
105	Natural user interface as a supplement of the holographic Raman tweezers. Proceedings of SPIE, 2014, ,	0.8	1
106	Metallic nanoparticles in a standing wave: Optical force and heating. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 126, 84-90.	2.3	15
107	Optical forces in a non-diffracting vortex beam. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 126, 78-83.	2.3	19

108 Optical Forces Acting on Non-spherical Metallic Particles. , 2013, , .

#	Article	IF	CITATIONS
109	Spectral tuning of lasing emission from optofluidic droplet microlasers using optical stretching. Optics Express, 2013, 21, 21380.	3.4	27
110	Optical sorting due to optical binding. , 2013, , .		0
111	Tunable optofluidic microlasers based on optically stretched emulsion droplets. , 2013, , .		0
112	Optical manipulation of aerosol droplets using a holographic dual and single beam trap. Optics Letters, 2013, 38, 4601.	3.3	22
113	Following the Mechanisms of Bacteriostatic versus Bactericidal Action Using Raman Spectroscopy. Molecules, 2013, 18, 13188-13199.	3.8	78
114	Holographic Raman Tweezers Controlled by Hand Gestures and Voice Commands. Optics and Photonics Journal, 2013, 03, 331-336.	0.4	6
115	"Tractor Beam―in Microworld. , 2013, , .		0
116	Microstructures self-arranged by light. , 2013, , .		0
117	Raman spectroscopy for bacterial identification and characterization. Proceedings of SPIE, 2012, , .	0.8	1
118	Optical forces in higher order Bessel beam. , 2012, , .		0
119	Metallic Core-shell particle in a standing wave. , 2012, , .		0
120	Behaviour of self-arranged chain of colloidal particles in a travelling standing wave. Proceedings of SPIE, 2012, , .	0.8	0
121	Microfluidic systems for optical sorting. , 2012, , .		2
122	Optical trapping of metallic and core-shell particles in a 1D standing wave. , 2012, , .		0
123	Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, 1224.	1.5	44
124	Optical forces induced behavior of a particle in a non-diffracting vortex beam. Optics Express, 2012, 20, 24304.	3.4	41
125	Dynamic size tuning of multidimensional optically bound matter. Proceedings of SPIE, 2012, , .	0.8	0
126	Speed enhancement of multi-particle chain in a traveling standing wave. Applied Physics Letters, 2012, 100, 051103.	3.3	17

#	Article	IF	CITATIONS
127	Optical binding of unlike particles. , 2012, , .		5
128	Optical manipulation of airborne particles using flexible dual-beam trap. , 2012, , .		1
129	Rotation of microscopic discs by the angular momentum of light. Proceedings of SPIE, 2012, , .	0.8	1
130	Faster optical delivery of self-arranged multi-particle cluster. , 2012, , .		0
131	Raman microspectroscopy of algal lipid bodies: β-carotene quantification. Journal of Applied Phycology, 2012, 24, 541-546.	2.8	44
132	Characterization of microorganisms using Raman tweezers. Proceedings of SPIE, 2011, , .	0.8	3
133	Modelling of optical trapping. , 2011, , .		Ο
134	Parametric study of optical forces acting upon nanoparticles in a single, or a standing, evanescent wave. Journal of Optics (United Kingdom), 2011, 13, 044016.	2.2	13
135	Advanced optical manipulation with tailored counter-propagating laser beams. Proceedings of SPIE, 2011, , .	0.8	Ο
136	Raman microspectroscopy of algal lipid bodies: β-carotene as a volume sensor. Proceedings of SPIE, 2011, , .	0.8	7
137	Demonstration of multi-dimensional optical binding in counter-propagating laser beams with variable beam properties. , 2011, , .		0
138	Raman microspectroscopy based sensor of algal lipid unsaturation. Proceedings of SPIE, 2011, , .	0.8	0
139	Optical forces near surface: full 3D Finite Element Method based calculations. , 2011, , .		0
140	Optical binding in the asymmetrical configurations. , 2011, , .		0
141	Flexible dual-beam geometry for advanced optical micromanipulation experiments. , 2010, , .		0
142	Raman spectroscopy for the characterization of algal cells. Proceedings of SPIE, 2010, , .	0.8	2
143	Formation of one-dimensional optically bound structures of polystyrene particles near the surface. Proceedings of SPIE, 2010, , .	0.8	0
144	Particle escape over a potential barrier in 1D optical potential energy landscape. , 2010, , .		0

#	Article	IF	CITATIONS
145	Particle jumps between optical traps in a one-dimensional (1D) optical lattice. New Journal of Physics, 2010, 12, 083001.	2.9	28
146	<i>Colloquium</i> : Gripped by light: Optical binding. Reviews of Modern Physics, 2010, 82, 1767-1791.	45.6	449
147	Raman Microspectroscopy of Individual Algal Cells: Sensing Unsaturation of Storage Lipids in vivo. Sensors, 2010, 10, 8635-8651.	3.8	151
148	Active sorting switch for biological objects. , 2010, , .		2
149	Particles collective effects in counter-propagating Bessel beams. Proceedings of SPIE, 2009, , .	0.8	0
150	Particle dynamics in optical lattices. , 2009, , .		0
151	Transport of multi-particle clusters by motional standing wave optical traps. , 2009, , .		0
152	Optically bound chain of microparticles. , 2009, , .		0
153	Light at work: The use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis, 2008, 29, 4813-4851.	2.4	338
154	Static optical sorting in a laser interference field. Applied Physics Letters, 2008, 92, .	3.3	54
155	High quality quasi-Bessel beam generated by round-tip axicon. Optics Express, 2008, 16, 12688.	3.4	288
156	Stability and dynamics of self-arranged structures in longitudinal optical binding. Proceedings of SPIE, 2008, , .	0.8	0
157	Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination. New Journal of Physics, 2008, 10, 113010.	2.9	33
158	Laser beam interference and its applications in optical micromanipulation. Proceedings of SPIE, 2008, , .	0.8	0
159	Raman microspectroscopy of optically trapped micro- and nanoobjects. Proceedings of SPIE, 2008, , .	0.8	3
160	Delivery of multiparticle chains by an optical conveyor belt. , 2008, , .		0
161	Light microscopy adapter for laser based microscopy techniques. , 2008, , .		0
162	Mechanical effects of interference light field on dielectric microparticles. , 2008, , .		0

#	Article	IF	CITATIONS
163	One-dimensional long-range self-arranged optically bound structures. , 2008, , .		Ο
164	Optically bound chain of microparticles. , 2008, , .		0
165	Quasi-Bessel beam generated by oblate-tip axicon. Proceedings of SPIE, 2008, , .	0.8	2
166	Axial optical trap stiffness influenced by retro-reflected beam. Journal of Optics, 2007, 9, S251-S255.	1.5	10
167	<title>How to use laser radiative and evanescent interference fields to control movement of the sub-micron objects</title> . , 2007, , .		0
168	<title>What is it optical binding and how to study this phenomena</title> . Proceedings of SPIE, 2007, , .	0.8	0
169	<title>Manufacturing of extremely narrow polymer fibers by non-diffracting beams</title> ., 2007, , .		2
170	<title>Compact laser tweezers</title> . , 2007, , .		0
171	Optical tracking of spherical micro-objects in spatially periodic interference fields. Optics Express, 2007, 15, 2262.	3.4	9
172	Transverse particle dynamics in a Bessel beam. Optics Express, 2007, 15, 13972.	3.4	80
173	Cellular and Colloidal Separation Using Optical Forces. Methods in Cell Biology, 2007, 82, 467-495.	1.1	50
174	Optical forces acting on a nanoparticle placed into an interference evanescent field. Optics Communications, 2007, 275, 409-420.	2.1	22
175	Optical sorting and detection of submicrometer objects in a motional standing wave. Physical Review B, 2006, 74, .	3.2	132
176	Sub-micron particle organization by self-imaging of non-diffracting beams. New Journal of Physics, 2006, 8, 43-43.	2.9	116
177	Formation of long and thin polymer fiber using nondiffracting beam. Optics Express, 2006, 14, 8506.	3.4	44
178	<title>Optical conveyor belt for delivery of sub-micron objects</title> ., 2006, , .		0
179	<title>Behavior of colloidal microparticles in interference field created by several laser beams</title> ., 2006, 6180, 511.		0
180	Optical interference fields: an excellent tool kit to study Brownian dynamics. , 2006, , .		0

#	Article	IF	CITATIONS
181	<title>Measurement of surface details with nanometer resolution using several optically held probes</title> . , 2006, , .		0
182	Precise determination of object position in 1D optical lattice. , 2006, 6326, 549.		0
183	Static particle sorting in 1D optical lattice. , 2006, , .		1
184	Submicron-scale Brownian swimmer or surfer in one dimensional standing wave optical traps. , 2006, 6326, 645.		1
185	Non-diffracting beam synthesis used for optical trapping and delivery of sub-micron objects. , 2006, , .		1
186	Optical binding in non-diffracting beams. , 2006, , .		4
187	Narrow polymer fibers obtained as a combination of photopolymerization and non-diffracting beams. , 2006, , .		0
188	Combination of photopolymerization and optical micromanipulation techniques. , 2005, , .		0
189	Optical binding of micron-size spheres. , 2005, , .		0
190	Behavior of submicron colloids in two-dimensional optical lattice. , 2005, , .		1
191	Optical binding in theory. , 2005, , .		0
192	Submicron particle localization using evanescent field. , 2005, , .		4
193	How the stiffness of the optical trap depends on the proximity of the dielectric interface. , 2005, , .		0
194	Optical conveyor belt based on Bessel beams. , 2005, , .		1
195	Behavior of microparticles in laser interference field. , 2005, , .		2
196	Sub-micron particle delivery using evanescent field. , 2005, 5958, 147.		0
197	Optical conveyor belt for delivery of submicron objects. Applied Physics Letters, 2005, 86, 174101.	3.3	194

198 Optical trapping in counter-propagating Bessel beams. , 2004, , .

29

#	Article	IF	CITATIONS
199	Optical forces acting on Rayleigh particle placed into interference field. Optics Communications, 2004, 240, 401-415.	2.1	37
200	Behavior of colloidal microparticles in a planar 3-beam interference field. , 2004, 5514, 15.		3
201	How the size of a particle approaching dielectric interface influences its behavior. , 2004, , .		1
202	Theoretical comparison of optical traps created by standing wave and single beam. Optics Communications, 2003, 220, 401-412.	2.1	84
203	Spatial structure of chromatin in hybrid cells produced by laser-induced fusion studied by optical microscopy. , 2003, 5036, 630.		0
204	Behaviour of an optically trapped probe approaching a dielectric interface. Journal of Modern Optics, 2003, 50, 1615-1625.	1.3	23
205	Employment of laser-induced fusion of living cells for the study of spatial structure of chromatin. , 2003, , .		0
206	The use of an optically trapped microprobe for scanning details of surface. , 2003, 5259, 166.		1
207	Influence of weak reflections from dielectric interfaces on properties of optical trap. , 2003, , .		1
208	<title>Use of a microprobe held by a laser beam for the study of surface reliefs</title> ., 2002, , .		0
209	Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2002, 19, 1025.	1.5	94
210	Single-beam trapping in front of reflective surfaces. Optics Letters, 2001, 26, 1466.	3.3	65
211	<title>Comparison of the single beam and the standing wave trap stiffnesses</title> . , 2001, 4356, 347.		1
212	<title>Behavior of nanoparticle and microparticle in the standing wave trap</title> ., 2001, , .		2
213	Optical trapping of nanoparticles and microparticles by a Gaussian standing wave. Optics Letters, 1999, 24, 1448.	3.3	122
214	Manipulation of micro-objects by means of a focused laser beam. , 1998, 3320, 104.		0
215	Strong Gaussian standing wave: an efficient tool for laser cooling of atomic beams. , 1998, , .		3