Pavel ZemÃ;nek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8536910/publications.pdf

Version: 2024-02-01

215 papers 4,162 citations

34 h-index 62 g-index

215 all docs

215 docs citations

215 times ranked

3229 citing authors

#	Article	IF	CITATIONS
1	<i>Colloquium</i> : Gripped by light: Optical binding. Reviews of Modern Physics, 2010, 82, 1767-1791.	45.6	449
2	Light at work: The use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis, 2008, 29, 4813-4851.	2.4	338
3	High quality quasi-Bessel beam generated by round-tip axicon. Optics Express, 2008, 16, 12688.	3.4	288
4	Optical conveyor belt for delivery of submicron objects. Applied Physics Letters, 2005, 86, 174101.	3.3	194
5	Raman Microspectroscopy of Individual Algal Cells: Sensing Unsaturation of Storage Lipids in vivo. Sensors, 2010, 10, 8635-8651.	3.8	151
6	Optical sorting and detection of submicrometer objects in a motional standing wave. Physical Review B, 2006, 74, .	3.2	132
7	Optical trapping of nanoparticles and microparticles by a Gaussian standing wave. Optics Letters, 1999, 24, 1448.	3.3	122
8	Sub-micron particle organization by self-imaging of non-diffracting beams. New Journal of Physics, 2006, 8, 43-43.	2.9	116
9	Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2002, 19, 1025.	1.5	94
10	Perspective on light-induced transport of particles: from optical forces to phoretic motion. Advances in Optics and Photonics, 2019, 11, 577.	25.5	91
11	Theoretical comparison of optical traps created by standing wave and single beam. Optics Communications, 2003, 220, 401-412.	2.1	84
12	Transverse particle dynamics in a Bessel beam. Optics Express, 2007, 15, 13972.	3.4	80
13	Following the Mechanisms of Bacteriostatic versus Bactericidal Action Using Raman Spectroscopy. Molecules, 2013, 18, 13188-13199.	3.8	78
14	Single-beam trapping in front of reflective surfaces. Optics Letters, 2001, 26, 1466.	3.3	65
15	Optical Trapping, Optical Binding, and Rotational Dynamics of Silicon Nanowires in Counter-Propagating Beams. Nano Letters, 2019, 19, 342-352.	9.1	63
16	Three-Dimensional Optical Trapping of a Plasmonic Nanoparticle using Low Numerical Aperture Optical Tweezers. Scientific Reports, 2015, 5, 8106.	3.3	60
17	Accuracy and Mechanistic Details of Optical Printing of Single Au and Ag Nanoparticles. ACS Nano, 2017, 11, 9678-9688.	14.6	58
18	Rapid identification of staphylococci by Raman spectroscopy. Scientific Reports, 2017, 7, 14846.	3.3	57

#	Article	IF	CITATIONS
19	Static optical sorting in a laser interference field. Applied Physics Letters, 2008, 92, .	3.3	54
20	Algal Biomass Analysis by Laser-Based Analytical Techniquesâ€"A Review. Sensors, 2014, 14, 17725-17752.	3.8	53
21	Cellular and Colloidal Separation Using Optical Forces. Methods in Cell Biology, 2007, 82, 467-495.	1.1	50
22	Nanovortexâ€Driven Allâ€Dielectric Optical Diffusion Boosting and Sorting Concept for Labâ€onâ€aâ€Chip Platforms. Advanced Science, 2020, 7, 1903049.	11.2	49
23	Omnidirectional Transport in Fully Reconfigurable Two Dimensional Optical Ratchets. Physical Review Letters, 2017, 118, 138002.	7.8	46
24	Formation of long and thin polymer fiber using nondiffracting beam. Optics Express, 2006, 14, 8506.	3.4	44
25	Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, 1224.	1.5	44
26	Raman microspectroscopy of algal lipid bodies: \hat{l}^2 -carotene quantification. Journal of Applied Phycology, 2012, 24, 541-546.	2.8	44
27	Candida parapsilosis Biofilm Identification by Raman Spectroscopy. International Journal of Molecular Sciences, 2014, 15, 23924-23935.	4.1	43
28	Complex rotational dynamics of multiple spheroidal particles in a circularly polarized, dual beam trap. Optics Express, 2015, 23, 7273.	3.4	42
29	Optical forces induced behavior of a particle in a non-diffracting vortex beam. Optics Express, 2012, 20, 24304.	3.4	41
30	Optical Binding of Nanowires. Nano Letters, 2017, 17, 3485-3492.	9.1	39
31	Diffusing up the Hill: Dynamics and Equipartition in Highly Unstable Systems. Physical Review Letters, 2018, 121, 230601.	7.8	39
32	Wavelength-Dependent Optical Force Aggregation of Gold Nanorods for SERS in a Microfluidic Chip. Journal of Physical Chemistry C, 2019, 123, 5608-5615.	3.1	38
33	Optical forces acting on Rayleigh particle placed into interference field. Optics Communications, 2004, 240, 401-415.	2.1	37
34	Rotation, oscillation and hydrodynamic synchronization of optically trapped oblate spheroidal microparticles. Optics Express, 2014, 22, 16207.	3.4	36
35	Binding of a pair of Au nanoparticles in a wide Gaussian standing wave. Optical Review, 2015, 22, 157-161.	2.0	35
36	Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of E. coli under Antibiotic Stress. Sensors, 2018, 18, 1623.	3.8	34

#	Article	IF	CITATIONS
37	Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination. New Journal of Physics, 2008, 10, 113010.	2.9	33
38	Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy. Sensors, 2015, 15, 29635-29647.	3.8	32
39	Non-spherical gold nanoparticles trapped in optical tweezers: shape matters. Optics Express, 2015, 23, 8179.	3.4	30
40	Effects of Infrared Optical Trapping on Saccharomyces cerevisiae in a Microfluidic System. Sensors, 2017, 17, 2640.	3.8	30
41	Coherent oscillations of a levitated birefringent microsphere in vacuum driven by nonconservative rotation-translation coupling. Science Advances, 2020, 6, eaaz9858.	10.3	30
42	Optical trapping in counter-propagating Bessel beams. , 2004, , .		29
43	Enhancement of the â€~tractor-beam' pulling force on an optically bound structure. Light: Science and Applications, 2018, 7, 17135-17135.	16.6	29
44	Particle jumps between optical traps in a one-dimensional (1D) optical lattice. New Journal of Physics, 2010, 12, 083001.	2.9	28
45	Spectral tuning of lasing emission from optofluidic droplet microlasers using optical stretching. Optics Express, 2013, 21, 21380.	3.4	27
46	Quantitative Raman Spectroscopy Analysis of Polyhydroxyalkanoates Produced by Cupriavidus necator H16. Sensors, 2016, 16, 1808.	3.8	24
47	Stochastic dynamics of optically bound matter levitated in vacuum. Optica, 2021, 8, 220.	9.3	24
48	Behaviour of an optically trapped probe approaching a dielectric interface. Journal of Modern Optics, 2003, 50, 1615-1625.	1.3	23
49	Optical forces acting on a nanoparticle placed into an interference evanescent field. Optics Communications, 2007, 275, 409-420.	2.1	22
50	Optical manipulation of aerosol droplets using a holographic dual and single beam trap. Optics Letters, 2013, 38, 4601.	3.3	22
51	Optical sorting of nonspherical and living microobjects in moving interference structures. Optics Express, 2014, 22, 29746.	3.4	22
52	Controlled Oil/Water Partitioning of Hydrophobic Substrates Extending the Bioanalytical Applications of Droplet-Based Microfluidics. Analytical Chemistry, 2019, 91, 10008-10015.	6.5	20
53	Optical forces in a non-diffracting vortex beam. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 126, 78-83.	2.3	19
54	Differentiation between <i>Staphylococcus aureus</i> and <i>Staphylococcus epidermidis</i> strains using Raman spectroscopy. Future Microbiology, 2017, 12, 881-890.	2.0	19

#	Article	IF	CITATIONS
55	Thermally induced micro-motion by inflection in optical potential. Scientific Reports, 2017, 7, 1697.	3.3	18
56	Spin to orbital light momentum conversion visualized by particle trajectory. Scientific Reports, 2019, 9, 4127.	3.3	18
57	Speed enhancement of multi-particle chain in a traveling standing wave. Applied Physics Letters, 2012, 100, 051103.	3.3	17
58	Raman spectroscopyâ€"a tool for rapid differentiation among microbes causing urinary tract infections. Analytica Chimica Acta, 2022, 1191, 339292.	5.4	17
59	Identification of individual biofilm-forming bacterial cells using Raman tweezers. Journal of Biomedical Optics, 2015, 20, 051038.	2.6	16
60	Identification of ability to form biofilm in <i>Candida parapsilosis</i> and <i>Staphylococcus epidermidis</i> by Raman spectroscopy. Future Microbiology, 2019, 14, 509-517.	2.0	16
61	Tunable Soft-Matter Optofluidic Waveguides Assembled by Light. ACS Photonics, 2019, 6, 403-410.	6.6	16
62	Metallic nanoparticles in a standing wave: Optical force and heating. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 126, 84-90.	2.3	15
63	Noise-to-signal transition of a Brownian particle in the cubic potential: I. general theory. Journal of Optics (United Kingdom), 2016, 18, 065401.	2.2	14
64	Parametric study of optical forces acting upon nanoparticles in a single, or a standing, evanescent wave. Journal of Optics (United Kingdom), 2011, 13, 044016.	2.2	13
65	Direct measurement of the temperature profile close to an optically trapped absorbing particle. Optics Letters, 2016, 41, 870.	3.3	13
66	Thermal tuning of spectral emission from optically trapped liquid-crystal droplet resonators. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 1855.	2.1	13
67	Using the transient trajectories of an optically levitated nanoparticle to characterize a stochastic Duffing oscillator. Scientific Reports, 2020, 10, 14436.	3.3	13
68	Dynamics of an optically bound structure made of particles of unequal sizes. Optics Letters, 2017, 42, 1436.	3.3	13
69	Thermally induced passage and current of particles in a highly unstable optical potential. Physical Review E, 2016, 94, 042108.	2.1	12
70	Holographic Raman tweezers controlled by multi-modal natural user interface. Journal of Optics (United Kingdom), 2016, 18, 015602.	2.2	12
71	Challenges on optical printing of colloidal nanoparticles. Journal of Chemical Physics, 2022, 156, 034201.	3.0	12
72	Chiral particles in the dual-beam optical trap. Optics Express, 2016, 24, 26382.	3.4	11

#	Article	IF	CITATIONS
73	Noise-to-signal transition of a Brownian particle in the cubic potential: II. optical trapping geometry. Journal of Optics (United Kingdom), 2016, 18, 065402.	2.2	11
74	Axial optical trap stiffness influenced by retro-reflected beam. Journal of Optics, 2007, 9, S251-S255.	1.5	10
75	Optical tracking of spherical micro-objects in spatially periodic interference fields. Optics Express, 2007, 15, 2262.	3.4	9
76	Optomechanical properties of optically self-arranged colloidal waveguides. Optics Letters, 2019, 44, 707.	3.3	8
77	Raman microspectroscopy of algal lipid bodies: \hat{l}^2 -carotene as a volume sensor. Proceedings of SPIE, 2011, , .	0.8	7
78	Stochastic Hopf bifurcations in vacuum optical tweezers. Physical Review A, 2021, 104, .	2.5	7
79	Detection of Chloroalkanes by Surface-Enhanced Raman Spectroscopy in Microfluidic Chips. Sensors, 2018, 18, 3212.	3.8	6
80	Analysis of Bacteriophage–Host Interaction by Raman Tweezers. Analytical Chemistry, 2020, 92, 12304-12311.	6.5	6
81	Holographic Raman Tweezers Controlled by Hand Gestures and Voice Commands. Optics and Photonics Journal, 2013, 03, 331-336.	0.4	6
82	Optical binding of unlike particles. , 2012, , .		5
83	Complex colloidal structures with non-linear optical properties formed in an optical trap. Optics Express, 2020, 28, 37700.	3.4	5
84	Submicron particle localization using evanescent field., 2005,,.		4
85	Optical binding in non-diffracting beams. , 2006, , .		4
86	Optical trapping in secondary maxima of focused laser beam. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 162, 114-121.	2.3	4
87	Optically Transportable Optofluidic Microlasers with Liquid Crystal Cavities Tuned by the Electric Field. ACS Applied Materials & Samp; Interfaces, 2021, 13, 50657-50667.	8.0	4
88	Strong Gaussian standing wave: an efficient tool for laser cooling of atomic beams. , 1998, , .		3
89	Behavior of colloidal microparticles in a planar 3-beam interference field., 2004, 5514, 15.		3
90	Raman microspectroscopy of optically trapped micro- and nanoobjects. Proceedings of SPIE, 2008, , .	0.8	3

#	Article	IF	CITATIONS
91	Characterization of microorganisms using Raman tweezers. Proceedings of SPIE, 2011, , .	0.8	3
92	Raman tweezers in microfluidic systems for analysis and sorting of living cells. , 2014, , .		3
93	Raman Microspectroscopic Analysis of Selenium Bioaccumulation by Green Alga Chlorella vulgaris. Biosensors, 2021, 11, 115.	4.7	3
94	<title>Behavior of nanoparticle and microparticle in the standing wave trap</title> ., 2001,,.		2
95	Behavior of microparticles in laser interference field. , 2005, , .		2
96	<title>Manufacturing of extremely narrow polymer fibers by non-diffracting beams</title> ., 2007, , .		2
97	Quasi-Bessel beam generated by oblate-tip axicon. Proceedings of SPIE, 2008, , .	0.8	2
98	Raman spectroscopy for the characterization of algal cells. Proceedings of SPIE, 2010, , .	0.8	2
99	Active sorting switch for biological objects. , 2010, , .		2
100	Microfluidic systems for optical sorting. , 2012, , .		2
101	Tunable WGM resonators from optically trapped dye doped liquid crystal emulsion droplets. , 2014, , .		2
102	Optical trapping of non-spherical plasmonic nanoparticles. Proceedings of SPIE, 2014, , .	0.8	2
103	Droplet resonator based optofluidic microlasers. , 2014, , .		2
104	<title>Comparison of the single beam and the standing wave trap stiffnesses</title> ., 2001, 4356, 347.		1
105	The use of an optically trapped microprobe for scanning details of surface. , 2003, 5259, 166.		1
106	Influence of weak reflections from dielectric interfaces on properties of optical trap., 2003,,.		1
107	How the size of a particle approaching dielectric interface influences its behavior. , 2004, , .		1
108	Behavior of submicron colloids in two-dimensional optical lattice. , 2005, , .		1

#	Article	IF	CITATIONS
109	Optical conveyor belt based on Bessel beams. , 2005, , .		1
110	Static particle sorting in 1D optical lattice., 2006,,.		1
111	Submicron-scale Brownian swimmer or surfer in one dimensional standing wave optical traps. , 2006, 6326, 645.		1
112	Non-diffracting beam synthesis used for optical trapping and delivery of sub-micron objects. , 2006, , .		1
113	Raman spectroscopy for bacterial identification and characterization. Proceedings of SPIE, 2012, , .	0.8	1
114	Optical manipulation of airborne particles using flexible dual-beam trap. , 2012, , .		1
115	Rotation of microscopic discs by the angular momentum of light. Proceedings of SPIE, 2012, , .	0.8	1
116	Optical Forces Acting on Non-spherical Metallic Particles. , 2013, , .		1
117	Raman tweezers on bacteria: following the mechanisms of bacteriostatic versus bactericidal action. , 2014, , .		1
118	Natural user interface as a supplement of the holographic Raman tweezers. Proceedings of SPIE, 2014, , .	0.8	1
119	In-situ aberration correction of Bessel beams using spatial light modulator. , 2015, , .		1
120	Laser tweezers Raman spectroscopy of E. coli under antibiotic stress in microfluidic chips. , 2018, , .		1
121	Multimode fiber transmission matrix obtained with internal references. , 2019, , .		1
122	Manipulation of micro-objects by means of a focused laser beam., 1998, 3320, 104.		0
123	<title>Use of a microprobe held by a laser beam for the study of surface reliefs</title> ., 2002,,.		O
124	Spatial structure of chromatin in hybrid cells produced by laser-induced fusion studied by optical microscopy., 2003, 5036, 630.		0
125	Employment of laser-induced fusion of living cells for the study of spatial structure of chromatin. , 2003, , .		0
126	Combination of photopolymerization and optical micromanipulation techniques. , 2005, , .		0

#	Article	IF	CITATIONS
127	Optical binding of micron-size spheres. , 2005, , .		O
128	Optical binding in theory. , 2005, , .		0
129	How the stiffness of the optical trap depends on the proximity of the dielectric interface. , 2005, , .		0
130	Sub-micron particle delivery using evanescent field., 2005, 5958, 147.		0
131	<title>Optical conveyor belt for delivery of sub-micron objects</title> ., 2006, , .		0
132	<title>Behavior of colloidal microparticles in interference field created by several laser beams</title> ., 2006, 6180, 511.		0
133	Optical interference fields: an excellent tool kit to study Brownian dynamics. , 2006, , .		0
134	<title>Measurement of surface details with nanometer resolution using several optically held probes</title> ., 2006,,.		0
135	Precise determination of object position in 1D optical lattice. , 2006, 6326, 549.		0
136	Narrow polymer fibers obtained as a combination of photopolymerization and non-diffracting beams. , 2006, , .		0
137	<title>How to use laser radiative and evanescent interference fields to control movement of the sub-micron objects</title> ., 2007, , .		O
138	<title>What is it optical binding and how to study this phenomena</title> . Proceedings of SPIE, 2007, , .	0.8	0
139	<title>Compact laser tweezers</title> .,2007,,.		0
140	Stability and dynamics of self-arranged structures in longitudinal optical binding. Proceedings of SPIE, 2008, , .	0.8	0
141	Laser beam interference and its applications in optical micromanipulation. Proceedings of SPIE, 2008, , .	0.8	0
142	Delivery of multiparticle chains by an optical conveyor belt. , 2008, , .		0
143	Light microscopy adapter for laser based microscopy techniques. , 2008, , .		0
144	Mechanical effects of interference light field on dielectric microparticles. , 2008, , .		0

#	Article	IF	CITATIONS
145	One-dimensional long-range self-arranged optically bound structures. , 2008, , .		О
146	Optically bound chain of microparticles. , 2008, , .		0
147	Particles collective effects in counter-propagating Bessel beams. Proceedings of SPIE, 2009, , .	0.8	O
148	Particle dynamics in optical lattices. , 2009, , .		0
149	Flexible dual-beam geometry for advanced optical micromanipulation experiments. , 2010, , .		O
150	Formation of one-dimensional optically bound structures of polystyrene particles near the surface. Proceedings of SPIE, 2010, , .	0.8	0
151	Particle escape over a potential barrier in 1D optical potential energy landscape. , 2010, , .		O
152	Modelling of optical trapping. , 2011, , .		0
153	Advanced optical manipulation with tailored counter-propagating laser beams. Proceedings of SPIE, 2011, , .	0.8	O
154	Demonstration of multi-dimensional optical binding in counter-propagating laser beams with variable beam properties. , 2011 , , .		0
155	Raman microspectroscopy based sensor of algal lipid unsaturation. Proceedings of SPIE, 2011, , .	0.8	O
156	Optical forces in higher order Bessel beam. , 2012, , .		0
157	Metallic Core-shell particle in a standing wave. , 2012, , .		O
158	Behaviour of self-arranged chain of colloidal particles in a travelling standing wave. Proceedings of SPIE, 2012, , .	0.8	0
159	Optical trapping of metallic and core-shell particles in a 1D standing wave. , 2012, , .		0
160	Dynamic size tuning of multidimensional optically bound matter. Proceedings of SPIE, 2012, , .	0.8	0
161	Faster optical delivery of self-arranged multi-particle cluster. , 2012, , .		0
162	Optical sorting due to optical binding. , 2013, , .		0

#	Article	IF	CITATIONS
163	Tunable optofluidic microlasers based on optically stretched emulsion droplets. , 2013, , .		O
164	Manipulation of metal-dielectric core-shell particles in optical fields., 2014,,.		0
165	Single-beam trapping using laser beams focused by low and high numerical apertures: angular spectrum approach. , 2014, , .		0
166	Monitoring the influence of antibiotic exposure using Raman spectroscopy. Proceedings of SPIE, 2014, , .	0.8	0
167	Anomalous behavior of a three-dimensional, optically trapped, super-paramagnetic particle. , 2014, , .		0
168	Experimental analysis of multiple-beam interference optical traps. Proceedings of SPIE, 2014, , .	0.8	0
169	Behavior of oblate spheroidal microparticles in a tightly focused optical vortex beam. Proceedings of SPIE, 2014, , .	0.8	0
170	Reproducible and time-course study of yeast biofilm by Raman spectroscopy. Proceedings of SPIE, 2014, ,	0.8	0
171	Behaviour of a non-spherical metal nanoparticle in an optical trap. Proceedings of SPIE, 2014, , .	0.8	0
172	Micro-particles self-arrangement in shapeable counter-propagating beams. , 2014, , .		0
173	Particles in motion driven by optical binding. , 2014, , .		0
174	Raman tweezers in microfluidic systems for analysis and sorting of living cells. , 2014, , .		0
175	Liquid crystal emulsion micro-droplet WGM resonators. Proceedings of SPIE, 2014, , .	0.8	0
176	Rotation of dielectric disks in focused vortex beams. , 2015, , .		0
177	Time-resolved study of microorganisms by Raman spectroscopy. Proceedings of SPIE, 2015, , .	0.8	0
178	Rotational behavior of oblate golden nanoparticles in circularly polarized dual beam optical trap. , 2015, , .		0
179	Theoretical analysis of motion of a microparticle in an optically created cubic potential. Proceedings of SPIE, 2016, , .	0.8	0
180	Temperature-induced tuning of emission spectra of liquid-crystal optical microcavities. Proceedings of SPIE, 2016, , .	0.8	0

#	Article	IF	CITATIONS
181	Optical binding of particle pairs in retro-reflected beam geometry. Proceedings of SPIE, 2016, , .	0.8	О
182	Semi-automated sorting using holographic optical tweezers remotely controlled by eye/hand tracking camera. , 2016, , .		0
183	Two-photon photopolymerization with multiple laser beams. Proceedings of SPIE, 2016, , .	0.8	0
184	Characterizing particle pairs optically bound in "tractor beam". Proceedings of SPIE, 2016, , .	0.8	0
185	Directed evolution of enzymes using microfluidic chips. , 2016, , .		O
186	Time evolution of trapped single cell microorganism. Proceedings of SPIE, 2016, , .	0.8	0
187	Morphological and Production Changes in Planktonic and Biofilm Cells Monitored Using SEM and Raman Spectroscopy. Microscopy and Microanalysis, 2017, 23, 1158-1159.	0.4	O
188	Experimental stochastic systems based on optical forces. Journal of Physics: Conference Series, 2018, 1092, 012173.	0.4	0
189	Surface-enhanced Raman Spectroscopy in Microfluidic Chips for Directed Evolution of Enzymes and Environmental Monitoring., 2019,,.		O
190	Vacuum optomechanics of optically levitated objects. Journal of Physics: Conference Series, 2020, 1461, 012199.	0.4	0
191	Optically bound matter levitated in vacuum. , 2021, , .		0
192	Transport of multi-particle clusters by motional standing wave optical traps. , 2009, , .		0
193	Optically bound chain of microparticles. , 2009, , .		O
194	Optical forces near surface: full 3D Finite Element Method based calculations. , 2011, , .		0
195	Optical binding in the asymmetrical configurations. , 2011, , .		O
196	"Tractor Beam―in Microworld. , 2013, , .		0
197	Microstructures self-arranged by light. , 2013, , .		0
198	Shape Adapted Optical Forces And Interactions. , 2015, , .		0

#	Article	IF	CITATIONS
199	Raman-Tweezers Optofluidic System for Automatic Analysis and Sorting of Living Cells., 2015,,.		0
200	Time-resolved study of microorganisms by Raman spectroscopy. , 2015, , .		0
201	Optically Trapped Droplets of Liquid Crystals as Flexible, Tunable Optofluidic Microcavities. , 2017, , .		0
202	Motion rectification and transport control in 2D optical Brownian ratchets. , 2018, , .		0
203	Motion of optically bound particles in tractor beam. , 2018, , .		0
204	Underdamped and overdamped dynamics of objects in nonlinear optical potentials., 2018,,.		0
205	Anomalous shift of the most probable position of a particle in an unstable optically created potential. , 2018, , .		0
206	Measurement system for characterization of angular and spectral distribution of LED-based sources. , 2018, , .		0
207	Laser system for measuring MEMS relief created by the method of deep reactive ion etching. , 2018, , .		0
208	Motion of optically levitated nanoparticle in nonlinear regime. , 2018, , .		0
209	Surface-enhanced Raman spectroscopy of chloroalkanes in microfluidic chips. , 2018, , .		0
210	Tunable soft-matter optofluidic waveguides assembled by light. , 2019, , .		0
211	Analysis of microorganisms, chlorinated hydrocarbons and hyaluronic acid gel using Raman based optofluidic techniques and SERS. , 2019, , .		0
212	Spin-locked scattering forces in the near field of high index particles. AIP Conference Proceedings, 2020, , .	0.4	0
213	Non-conservative instabilities in optical vacuum traps., 2020,,.		0
214	Coherent oscillations of a birefringent microsphere in vacuum optical traps. , 2020, , .		0
215	Vacuum optomechanics of optically levitated objects: determination of nonlinear properties of the optical trap., 2020,,.		0