Richard D Wainford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8536324/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	2022 World Hypertension League, Resolve To Save Lives and International Society of Hypertension dietary sodium (salt) global call to action. Journal of Human Hypertension, 2023, 37, 428-437.	2.2	22
2	Biomechanical Properties of Mouse Carotid Arteries With Diet-Induced Metabolic Syndrome and Aging. Frontiers in Bioengineering and Biotechnology, 2022, 10, 862996.	4.1	7
3	Angiotensin II Type 1 Receptorâ€Mediated Hypothalamic Paraventricular Nucleus Neuroinflammation And Blood Brain Barrier Disruption Contribute To Ageâ€Dependent Hypertension In Male, But Not Female, Sprague Dawley Rats. FASEB Journal, 2022, 36, .	0.5	0
4	Association of urinary sodium and potassium excretion with systolic blood pressure in the Dietary Approaches to Stop Hypertension Sodium Trial. Journal of Human Hypertension, 2021, 35, 577-587.	2.2	8
5	Neuroanatomical characterization of Gαi ₂ -expressing neurons in the hypothalamic paraventricular nucleus of male and female Sprague-Dawley rats. Physiological Genomics, 2021, 53, 12-21.	2.3	3
6	Prospective meta-analysis protocol on randomised trials of renin–angiotensin system inhibitors in patients with COVID-19: an initiative of the International Society of Hypertension. BMJ Open, 2021, 11, e043625.	1.9	11
7	An exploratory analysis of comparative plasma metabolomic and lipidomic profiling in salt-sensitive and salt-resistant individuals from The Dietary Approaches to Stop Hypertension Sodium Trial. Journal of Hypertension, 2021, 39, 1972-1981.	0.5	4
8	Abstract P189: AT ₁ R-Dependent Blood-Brain Barrier Disruption Precedes Neuroinflammation In Age-Dependent Hypertension. Hypertension, 2021, 78, .	2.7	0
9	Abstract P281: Vascular Remodeling And Impaired Vascular Smooth Muscle Cell Plasticity In Age And Sex-dependent Hypertension. Hypertension, 2021, 78, .	2.7	Ο
10	The relationship of age and hypertension with cognition and gray matter cerebral blood volume in a rhesus monkey model of human aging Behavioral Neuroscience, 2021, 135, 680-692.	1.2	1
11	Sensory Afferent Renal Nerve Activated Gαi2 Subunit Proteins Mediate the Natriuretic, Sympathoinhibitory and Normotensive Responses to Peripheral Sodium Challenges. Frontiers in Physiology, 2021, 12, 771167.	2.8	1
12	Natriuresis During an Acute Intravenous Sodium Chloride Infusion in Conscious Sprague Dawley Rats Is Mediated by a Blood Pressure-Independent α1-Adrenoceptor-Mediated Mechanism. Frontiers in Physiology, 2021, 12, 784957.	2.8	0
13	Sympathetic Regulation of the NCC (Sodium Chloride Cotransporter) in Dahl Salt–Sensitive Hypertension. Hypertension, 2020, 76, 1461-1469.	2.7	18
14	May Measurement Month 2018: results of blood pressure screening from 41 countries. European Heart Journal Supplements, 2020, 22, H1-H4.	0.1	5
15	May Measurement Month 2019. Hypertension, 2020, 76, 333-341.	2.7	157
16	2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension, 2020, 75, 1334-1357.	2.7	1,895
17	2020 International Society of Hypertension global hypertension practice guidelines. Journal of Hypertension, 2020, 38, 982-1004.	0.5	452
18	Hypothalamic Paraventricular Nucleus Gαi ₂ (Guanine Nucleotide–Binding Protein Alpha) Tj ETQ	q0 0 0 rgE	3T /Overlock 1

Sensitivity of Blood Pressure. Hypertension, 2020, 75, 1002-1011.

#	Article	IF	CITATIONS
19	Microglialâ€Mediated PVN Inflammation Precedes Sympathoexcitation but not Hypertension in the Development of Gαi ₂ Proteinâ€Dependent Salt Sensitive Hypertension. FASEB Journal, 2020, 34, 1-1.	0.5	0
20	Anatomical Characterization Of Gαi 2 Expressing Hypothalamic Paraventricular Nucleus Neurons. FASEB Journal, 2020, 34, 1-1.	0.5	0
21	Neuroinflammation and Ageâ€Ðependent Salt‣ensitive Hypertension. FASEB Journal, 2020, 34, 1-1.	0.5	0
22	Impaired NCC Activity and Regulation on Dietary High Dietary Salt Intake in Aged Sprague Dawley Rats Is Associated with Increased Salt Sensitivity of Blood Pressure. FASEB Journal, 2020, 34, 1-1.	0.5	0
23	Adrenergic regulation of the NCC in the development and maintenance of Dahl Saltâ€Sensitive Hypertension occurs via a WNK/SPAK/OxSR1 pathway. FASEB Journal, 2020, 34, 1-1.	0.5	1
24	Highlights from the International Society of Hypertension's New Investigators Network during 2019. Journal of Hypertension, 2020, 38, 968-973.	0.5	1
25	Abstract MP05: Pvn-specific Microgliosis And Inflammation Precedes Sympathoexcitation In gαl ₂ Protein-dependent, Salt-sensitive Hypertension. Hypertension, 2020, 76, .	2.7	0
26	Sympathetic regulation of NCC in norepinephrine-evoked salt-sensitive hypertension in Sprague-Dawley rats. American Journal of Physiology - Renal Physiology, 2019, 317, F1623-F1636.	2.7	16
27	Inhibition of microglial activation in rats attenuates paraventricular nucleus inflammation in Gαi ₂ proteinâ€dependent, saltâ€sensitive hypertension. Experimental Physiology, 2019, 104, 1892-1910.	2.0	16
28	May Measurement Month 2017: Results of 39 national blood pressure screening programmes. European Heart Journal Supplements, 2019, 21, D1-D4.	0.1	13
29	Role of the afferent renal nerves in sodium homeostasis and blood pressure regulation in rats. Experimental Physiology, 2019, 104, 1306-1323.	2.0	12
30	May Measurement Month 2018: a pragmatic global screening campaign to raise awareness of blood pressure by the International Society of Hypertension. European Heart Journal, 2019, 40, 2006-2017.	2.2	193
31	Moving the Needle on Hypertension. Nutrition Today, 2019, 54, 248-256.	1.0	3
32	A selective impairment in the mechanosensitive afferent renal nerveâ€mediated sympathoinhibitory renoâ€renal reflex contributes to ageâ€related hypertension. FASEB Journal, 2019, 33, 569.16.	0.5	0
33	Inhibition of Microgliosis with Minocycline Attenuates Central Inflammation Driving Gαi2 Protein Dependent Sympathetically Mediated Salt Sensitive Hypertension. FASEB Journal, 2019, 33, 850.1.	0.5	0
34	May Measurement Month 2017: an analysis of blood pressure screening results worldwide. The Lancet Global Health, 2018, 6, e736-e743.	6.3	245
35	Mechanisms of altered renal sodium handling in age-related hypertension. American Journal of Physiology - Renal Physiology, 2018, 315, F1-F6.	2.7	17
36	GNAI2 polymorphic variance associates with salt sensitivity of blood pressure in the Genetic Epidemiology Network of Salt Sensitivity study. Physiological Genomics, 2018, 50, 724-725.	2.3	13

#	Article	IF	CITATIONS
37	A Sympathetically Mediated α1â€Adrenoceptor Dependent Pathway Promotes Renal Sodium Chloride Cotransporter Activity in Ageâ€Related Hypertension. FASEB Journal, 2018, 32, 621.8.	0.5	0
38	GNAI2 Polymorphic Variance Associates with the Salt ensitivity of Blood Pressure. FASEB Journal, 2018, 32, 754.3.	0.5	0
39	How to Reduce Dietary Salt Intake. Hypertension, 2017, 70, 1087-1088.	2.7	1
40	Renal sodium handling and sodium sensitivity. Kidney Research and Clinical Practice, 2017, 36, 117-131.	2.2	20
41	OS 29-04 SYMPATHETIC NERVOUS SYSTEM REGULATION OF THE RENAL NCC AND BLOOD PRESSURE DURING HIGH DIETARY SALT INTAKE. Journal of Hypertension, 2016, 34, e253-e254.	0.5	0
42	Norepinephrine-evoked salt-sensitive hypertension requires impaired renal sodium chloride cotransporter activity in Sprague-Dawley rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R115-R124.	1.8	19
43	Impaired sodiumâ€evoked paraventricular nucleus neuronal activation and blood pressure regulation in conscious Sprague–Dawley rats lacking central G <i>α</i> i ₂ proteins. Acta Physiologica, 2016, 216, 314-329.	3.8	13
44	Renal Afferents. Current Hypertension Reports, 2016, 18, 69.	3.5	23
45	OS 11-01 Afferent renal nerve modulation of sodium homeostasis and blood pressure. Journal of Hypertension, 2016, 34, e74.	0.5	1
46	ED 09-1 RENAL SODIUM HANDLING AND SALT SENSITIVITY. Journal of Hypertension, 2016, 34, e537.	0.5	0
47	Across the globe in 4 months. Journal of Hypertension, 2015, 33, 891-893.	0.5	1
48	Brain Gαi2-subunit proteins and the prevention of salt sensitive hypertension. Frontiers in Physiology, 2015, 6, 233.	2.8	3
49	Hypotensive and sympathoinhibitory responses to selective central AT2 receptor stimulation in spontaneously hypertensive rats. Clinical Science, 2015, 129, 81-92.	4.3	33
50	Hypothalamic Signaling Mechanisms in Hypertension. Current Hypertension Reports, 2015, 17, 39.	3.5	59
51	Impact of Global Versus Renal-Specific Sympathoinhibition in Aldosterone-Induced Hypertension. Hypertension, 2015, 65, 1160-1162.	2.7	0
52	A novel method of selective ablation of afferent renal nerves by periaxonal application of capsaicin. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R112-R122.	1.8	85
53	Gαi ₂ -Protein–Mediated Signal Transduction. Hypertension, 2015, 65, 178-186.	2.7	33
54	Impaired Regulation of the Renal Sodium Chloride Cotransporter (NCC) in Animal Models of Saltâ€Sensitive Hypertension. FASEB Journal, 2015, 29, 811.2.	0.5	0

RICHARD D WAINFORD

#	Article	IF	CITATIONS
55	The renal afferent nerves: A role in countering saltâ€sensitive hypertension?. FASEB Journal, 2015, 29, 811.28.	0.5	0
56	Angiotensin AT2 receptors and the baroreflex control of renal sympathetic nerve activity. Acta Physiologica, 2014, 210, 714-716.	3.8	1
57	Presympathetic neuron dysfunction – time to reconsider increased intrinsic activity as the cause of neurogenic hypertension. Experimental Physiology, 2014, 99, 935-936.	2.0	1
58	Impaired renal NCC function and expression: a mechanism driving norepinephrine evoked saltâ€sensitive hypertension? (857.6). FASEB Journal, 2014, 28, 857.6.	0.5	0
59	Impaired PVN neuronal activity in response to acute sodium challenge drives persistent elevations in MAP in conscious rats lacking CNS GI±i2 proteins (686.6). FASEB Journal, 2014, 28, 686.6.	0.5	0
60	Central Nervous System Gαi ₂ -Subunit Proteins Maintain Salt Resistance via a Renal Nerve–Dependent Sympathoinhibitory Pathway. Hypertension, 2013, 61, 368-375.	2.7	26
61	Brain Gαi2-subunit protein-gated pathways are required to mediate the centrally evoked sympathoinhibitory mechanisms activated to maintain sodium homeostasis. Journal of Hypertension, 2013, 31, 747-757.	0.5	14
62	Brain heterotrimeric Gαi ₂ â€subunit proteinâ€gated pathways mediate central sympathoinhibition to maintain fluid and electrolyte homeostasis during stress. FASEB Journal, 2012, 26, 2776-2787.	0.5	24
63	Angiotensin II Reduces Food Intake by Altering Orexigenic Neuropeptide Expression in the Mouse Hypothalamus. Endocrinology, 2012, 153, 1411-1420.	2.8	56
64	Functional selectivity of central Gαâ€subunit proteins in mediating the cardiovascular and renal excretory responses evoked by central α ₂ â€adrenoceptor activation <i>in vivo</i> . British Journal of Pharmacology, 2012, 166, 210-220.	5.4	19
65	Brain Gαz/Gαq subunit proteinâ€gated pathways participate in regulating AVP secretion and urine output during conditions in which water homeostasis is challenged. FASEB Journal, 2011, 25, 1079.13.	0.5	0
66	Hypothalamic Paraventricular Nucleus Gαq Subunit Protein Pathways Mediate Vasopressin Dysregulation and Fluid Retention in Salt-Sensitive Rats. Endocrinology, 2010, 151, 5403-5414.	2.8	25
67	Peripheral vs central administration of NaCl differently modulates vasopressin secretion through the regulation of PVN Gαq subâ€unit proteins. FASEB Journal, 2010, 24, 1025.14.	0.5	Ο
68	Chronic high-NaCl intake prolongs the cardiorenal responses to central N/OFQ and produces regional changes in the endogenous brain NOP receptor system. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R280-R288.	1.8	18
69	Metabolism of cisplatin to a Nephrotoxin [Toxicology, 257(3), 174–175, doi 10.1016/j.tox.2008.12.014]. Toxicology, 2009, 257, 176-177.	4.2	4
70	The immediate early genes, c-fos, c-jun and AP-1, are early markers of platinum analogue toxicity in human proximal tubular cell primary cultures. Toxicology in Vitro, 2009, 23, 780-788.	2.4	12
71	Cisplatin nephrotoxicity is mediated by gamma glutamyltranspeptidase, not via a C-S lyase governed biotransformation pathway. Toxicology, 2008, 249, 184-193.	4.2	47
72	Central G-alpha subunit protein-mediated control of cardiovascular function, urine output, and vasopressin secretion in conscious Sprague-Dawley rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R535-R542.	1.8	9

#	Article	IF	CITATIONS
73	In vitro and in vivo studies on UFP-112, a novel potent and long lasting agonist selective for the nociceptin/orphanin FQ receptor. Peptides, 2007, 28, 1240-1251.	2.4	72
74	Central Gαi and Gαo protein inhibition by pertussis toxin (PTX) blocks the cardiovascular depressor but not diuretic response to central Nociceptin/Orphanin FQ (N/OFQ) administration in conscious Spragueâ€Đawley rats. FASEB Journal, 2007, 21, .	0.5	0
75	Chronic high NaCl intake alters the cardiovascular and renal responses to central administration of the opioidâ€like peptide, nociceptin/Orphanin FQ (N/OFQ), in conscious rats: relationship to brain N/OFQ peptide (NOP) receptor expression and Gâ€protein coupling. FASEB Journal, 2007, 21, A513.	0.5	0
76	Central Gαi2 Protein Mediated Neuro-Hormonal Control of Blood Pressure and Salt Sensitivity. Frontiers in Endocrinology, 0, 13, .	3.5	1