Adam C Martiny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8535783/publications.pdf

Version: 2024-02-01

38742 29157 12,177 109 50 104 citations h-index g-index papers 120 120 120 12202 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bio-GO-SHIP: The Time Is Right to Establish Global Repeat Sections of Ocean Biology. Frontiers in Marine Science, 2022, 8, .	2.5	9
2	Conceptual Exchanges for Understanding Free-Living and Host-Associated Microbiomes. MSystems, 2022, 7, e0137421.	3.8	3
3	Differential Response of Bacterial Microdiversity to Simulated Global Change. Applied and Environmental Microbiology, 2022, 88, aem0242921.	3.1	7
4	Marine phytoplankton resilience may moderate oligotrophic ecosystem responses and biogeochemical feedbacks to climate change. Limnology and Oceanography, 2022, 67, .	3.1	15
5	The Diel Cycle of Surface Ocean Elemental Stoichiometry has Implications for Ocean Productivity. Global Biogeochemical Cycles, 2022, 36, .	4.9	3
6	Microbial community response to a decade of simulated global changes depends on the plant community. Elementa, $2021, 9, .$	3.2	10
7	Exploring Trait Trade-Offs for Fungal Decomposers in a Southern California Grassland. Frontiers in Microbiology, 2021, 12, 655987.	3.5	6
8	Metagenomic analysis reveals global-scale patterns of ocean nutrient limitation. Science, 2021, 372, 287-291.	12.6	85
9	High spatial resolution global ocean metagenomes from Bio-GO-SHIP repeat hydrography transects. Scientific Data, 2021, 8, 107.	5.3	22
10	Linking a Latitudinal Gradient in Ocean Hydrography and Elemental Stoichiometry in the Eastern Pacific Ocean. Global Biogeochemical Cycles, 2021, 35, e2020GB006622.	4.9	10
11	<i>Prochlorococcus</i> , <i>Synechococcus</i> , and picoeukaryotic phytoplankton abundances in the global ocean. Limnology and Oceanography Letters, 2021, 6, 207-215.	3.9	40
12	Varying influence of phytoplankton biodiversity and stoichiometric plasticity on bulk particulate stoichiometry across ocean basins. Communications Earth & Environment, 2021, 2, .	6.8	17
13	Modeling Ocean Color Niche Selection by <i>Synechococcus</i> Blueâ€Green Acclimaters. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017434.	2.6	1
14	Diverse but uncertain responses of picophytoplankton lineages to future climate change. Limnology and Oceanography, 2021, 66, 4171-4181.	3.1	12
15	Gene Amplification Uncovers Large Previously Unrecognized Cryptic Antibiotic Resistance Potential in E. coli. Microbiology Spectrum, 2021, 9, e0028921.	3.0	11
16	The â€~1% culturability paradigm' needs to be carefully defined. ISME Journal, 2020, 14, 10-11.	9.8	30
17	Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME Journal, 2020, 14, 1-9.	9.8	470
18	Genomic adaptation of marine phytoplankton populations regulates phosphate uptake. Limnology and Oceanography, 2020, 65, S340.	3.1	13

#	Article	IF	CITATIONS
19	Subtle biogeochemical regimes in the Indian Ocean revealed by spatial and diel frequency of <i>Prochlorococcus</i> haplotypes. Limnology and Oceanography, 2020, 65, S220.	3.1	22
20	Persistent El Niñ0 driven shifts in marine cyanobacteria populations. PLoS ONE, 2020, 15, e0238405.	2.5	7
21	Latitudinal gradient in the respiration quotient and the implications for ocean oxygen availability. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22866-22872.	7.1	17
22	Linking regional shifts in microbial genome adaptation with surface ocean biogeochemistry. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190254.	4.0	33
23	Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nature Geoscience, 2020, 13, 116-120.	12.9	82
24	Role of ENSO Conditions on Particulate Organic Matter Concentrations and Elemental Ratios in the Southern California Bight. Frontiers in Marine Science, 2019, 6, .	2.5	8
25	Biogeochemical controls of surface ocean phosphate. Science Advances, 2019, 5, eaax0341.	10.3	84
26	Phylogenetic conservation of bacterial responses to soil nitrogen addition across continents. Nature Communications, 2019, 10, 2499.	12.8	48
27	A nutrient limitation mosaic in the eastern tropical Indian Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2019, 166, 125-140.	1.4	36
28	High proportions of bacteria are culturable across major biomes. ISME Journal, 2019, 13, 2125-2128.	9.8	109
29	Convergent estimates of marine nitrogen fixation. Nature, 2019, 566, 205-211.	27.8	187
30	Marine Cyanobacteria: Prochlorococcus and Synechococcus. , 2019, , 569-573.		2
31	Carbon and nitrogen productivity during spring in the oligotrophic Indian Ocean along the GO-SHIP IO9N transect. Deep-Sea Research Part II: Topical Studies in Oceanography, 2019, 161, 81-91.	1.4	27
32	Parallel phylogeography of <i>Prochlorococcus</i> and <i>Synechococcus</i> ISME Journal, 2019, 13, 430-441.	9.8	55
33	Ecological Stoichiometry of Ocean Plankton. Annual Review of Marine Science, 2018, 10, 43-69.	11.6	113
34	Drought increases the frequencies of fungal functional genes related to carbon and nitrogen acquisition. PLoS ONE, 2018, 13, e0206441.	2.5	24
35	Nutrient supply controls particulate elemental concentrations and ratios in the low latitude eastern Indian Ocean. Nature Communications, 2018, 9, 4868.	12.8	47
36	Decomposition responses to climate depend on microbial community composition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11994-11999.	7.1	214

#	Article	IF	Citations
37	Marine phytoplankton stoichiometry mediates nonlinear interactions between nutrient supply, temperature, and atmospheric CO ₂ . Biogeosciences, 2018, 15, 2761-2779.	3.3	24
38	Emergence of soil bacterial ecotypes along a climate gradient. Environmental Microbiology, 2018, 20, 4112-4126.	3.8	32
39	Nitrogen enrichment shifts functional genes related to nitrogen and carbon acquisition in the fungal community. Soil Biology and Biochemistry, 2018, 123, 87-96.	8.8	17
40	Increased biofilm formation due to high-temperature adaptation in marine Roseobacter. Nature Microbiology, 2018, 3, 989-995.	13.3	29
41	Evolutionary Pathway Determines the Stoichiometric Response of Escherichia coli Adapted to High Temperature. Frontiers in Ecology and Evolution, 2018, 5, .	2.2	3
42	High Variability in Cellular Stoichiometry of Carbon, Nitrogen, and Phosphorus Within Classes of Marine Eukaryotic Phytoplankton Under Sufficient Nutrient Conditions. Frontiers in Microbiology, 2018, 9, 543.	3.5	66
43	Editorial: Progress in Ecological Stoichiometry. Frontiers in Microbiology, 2018, 9, 1957.	3.5	36
44	Stoichiometry of <i>Prochlorococcus, Synechococcus</i> , and small eukaryotic populations in the western North Atlantic Ocean. Environmental Microbiology, 2017, 19, 1568-1583.	3.8	25
45	Microdiversity shapes the traits, niche space, and biogeography of microbial taxa. Environmental Microbiology Reports, 2017, 9, 55-70.	2.4	120
46	Microdiversity of an Abundant Terrestrial Bacterium Encompasses Extensive Variation in Ecologically Relevant Traits. MBio, 2017, 8, .	4.1	49
47	Microbial legacies alter decomposition in response to simulated global change. ISME Journal, 2017, 11, 490-499.	9.8	112
48	Glycoside Hydrolases across Environmental Microbial Communities. PLoS Computational Biology, 2016, 12, e1005300.	3.2	93
49	Interactions between Thermal Acclimation, Growth Rate, and Phylogeny Influence Prochlorococcus Elemental Stoichiometry. PLoS ONE, 2016, 11, e0168291.	2.5	45
50	Microzooplankton regulation of surface ocean POC:PON ratios. Global Biogeochemical Cycles, 2016, 30, 311-332.	4.9	23
51	Interactions between growth-dependent changes in cell size, nutrient supply and cellular elemental stoichiometry of marine <i>Synechococcus</i>). ISME Journal, 2016, 10, 2715-2724.	9.8	90
52	Global biogeography of microbial nitrogen-cycling traits in soil. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8033-8040.	7.1	365
53	Seasonal and longâ€term changes in elemental concentrations and ratios of marine particulate organic matter. Global Biogeochemical Cycles, 2016, 30, 1699-1711.	4.9	23
54	Biogeochemical interactions control a temporal succession in the elemental composition of marine communities. Limnology and Oceanography, 2016, 61, 531-542.	3.1	29

#	Article	IF	Citations
55	Microbial response to simulated global change is phylogenetically conserved and linked with functional potential. ISME Journal, 2016, 10, 109-118.	9.8	123
56	Diel variability in the elemental composition of the marine cyanobacterium (i>Synechococcus (i). Journal of Plankton Research, 2016, 38, 1052-1061.	1.8	36
57	Global biogeography of <i>Prochlorococcus</i> genome diversity in the surface ocean. ISME Journal, 2016, 10, 1856-1865.	9.8	76
58	Resource allocation by the marine cyanobacterium <scp><i>S</i></scp> <i>ynechococcus</i> <scp>WH</scp> 8102 in response to different nutrient supply ratios. Limnology and Oceanography, 2015, 60, 1634-1641.	3.1	23
59	C:N:P stoichiometry at the Bermuda Atlantic Time-series Study station in the North Atlantic Ocean. Biogeosciences, 2015, 12, 6389-6403.	3.3	37
60	A simple nutrient-dependence mechanism for predicting the stoichiometry of marine ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8199-8204.	7.1	170
61	Genomic Potential for Polysaccharide Deconstruction in Bacteria. Applied and Environmental Microbiology, 2015, 81, 1513-1519.	3.1	155
62	Temporal variation overshadows the response of leaf litter microbial communities to simulated global change. ISME Journal, 2015, 9, 2477-2489.	9.8	112
63	Influence of growth rate on the physiological response of marine Synechococcus to phosphate limitation. Frontiers in Microbiology, 2015, 6, 85.	3.5	20
64	Microbiomes in light of traits: A phylogenetic perspective. Science, 2015, 350, aac9323.	12.6	652
65	Nitrogen Cycling Potential of a Grassland Litter Microbial Community. Applied and Environmental Microbiology, 2015, 81, 7012-7022.	3.1	51
66	The Ocean as a Global Reservoir of Antibiotic Resistance Genes. Applied and Environmental Microbiology, 2015, 81, 7593-7599.	3.1	177
67	Physiology and evolution of nitrate acquisition in <i>Prochlorococcus</i> . ISME Journal, 2015, 9, 1195-1207.	9.8	130
68	Techniques for Quantifying Phytoplankton Biodiversity. Annual Review of Marine Science, 2015, 7, 299-324.	11.6	30
69	Phosphate supply explains variation in nucleic acid allocation but not C: P stoichiometry in the western North Atlantic. Biogeosciences, 2014, 11, 1599-1611.	3.3	16
70	Extracellular enzyme production and cheating in Pseudomonas fluorescens depend on diffusion rates. Frontiers in Microbiology, 2014, 5, 169.	3.5	35
71	Cellulolytic potential under environmental changes in microbial communities from grassland litter. Frontiers in Microbiology, 2014, 5, 639.	3.5	61
72	Impact of ocean phytoplankton diversity on phosphate uptake. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17540-17545.	7.1	93

#	Article	IF	CITATIONS
73	Global-scale variations of the ratios of carbon to phosphorus in exported marine organic matter. Nature Geoscience, 2014, 7, 895-898.	12.9	123
74	Phylogenetic constraints on elemental stoichiometry and resource allocation in heterotrophic marine bacteria. Environmental Microbiology, 2014, 16, 1398-1410.	3.8	69
75	Development and Bias Assessment of a Method for Targeted Metagenomic Sequencing of Marine Cyanobacteria. Applied and Environmental Microbiology, 2014, 80, 1116-1125.	3.1	12
76	Elemental stoichiometry of Fungi and Bacteria strains from grassland leaf litter. Soil Biology and Biochemistry, 2014, 76, 278-285.	8.8	133
77	Concentrations and ratios of particulate organic carbon, nitrogen, and phosphorus in the global ocean. Scientific Data, 2014, 1, 140048.	5.3	120
78	Presence of <l>Staphylococcus aureus</l> on University Dance Studio Floors and Barres: A Preliminary Investigation. Journal of Dance Medicine and Science, 2014, 18, 115-120.	0.7	0
79	Regional variation in the particulate organic carbon to nitrogen ratio in the surface ocean. Global Biogeochemical Cycles, 2013, 27, 723-731.	4.9	128
80	Beta diversity of marine bacteria depends on temporal scale. Ecology, 2013, 94, 1898-1904.	3.2	75
81	Microbial abundance and composition influence litter decomposition response to environmental change. Ecology, 2013, 94, 714-725.	3.2	340
82	Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nature Geoscience, 2013, 6, 279-283.	12.9	432
83	Phylogenetic conservatism of functional traits in microorganisms. ISME Journal, 2013, 7, 830-838.	9.8	526
84	Macroecological patterns of marine bacteria on a global scale. Journal of Biogeography, 2013, 40, 800-811.	3.0	53
85	Microdiversity of extracellular enzyme genes among sequenced prokaryotic genomes. ISME Journal, 2013, 7, 1187-1199.	9.8	188
86	Phylogenetic Distribution of Potential Cellulases in Bacteria. Applied and Environmental Microbiology, 2013, 79, 1545-1554.	3.1	267
87	Present and future global distributions of the marine Cyanobacteria <i>Prochlorococcus</i> and <i>Synechococcus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9824-9829.	7.1	1,097
88	A model for variable phytoplankton stoichiometry based on cell protein regulation. Biogeosciences, 2013, 10, 4341-4356.	3.3	42
89	Coupled high-throughput functional screening and next generation sequencing for identification of plant polymer decomposing enzymes in metagenomic libraries. Frontiers in Microbiology, 2013, 4, 282.	3.5	44
90	Fine-Scale Temporal Variation in Marine Extracellular Enzymes of Coastal Southern California. Frontiers in Microbiology, 2012, 3, 301.	3.5	48

#	Article	IF	Citations
91	Global distribution and diversity of marine <i>Verrucomicrobia</i> i>. ISME Journal, 2012, 6, 1499-1505.	9.8	196
92	Functional Metagenomics Reveals Previously Unrecognized Diversity of Antibiotic Resistance Genes in Gulls. Frontiers in Microbiology, 2011, 2, 238.	3.5	46
93	Prevalence of a calciumâ€based alkaline phosphatase associated with the marine cyanobacterium <i>Prochlorococcus</i> and other ocean bacteria. Environmental Microbiology, 2011, 13, 74-83.	3.8	114
94	Temporal dynamics of <i>Prochlorococcus</i> ecotypes in the Atlantic and Pacific oceans. ISME Journal, 2010, 4, 1252-1264.	9.8	221
95	Characterization of <i>Prochlorococcus </i> clades from iron-depleted oceanic regions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16184-16189.	7.1	183
96	Widespread metabolic potential for nitrite and nitrate assimilation among <i>Prochlorococcus</i> ecotypes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10787-10792.	7.1	174
97	Taxonomic resolution, ecotypes and the biogeography of <i>Prochlorococcus</i> Broironmental Microbiology, 2009, 11, 823-832.	3.8	188
98	Occurrence of phosphate acquisition genes in <i>Prochlorococcus</i> cells from different ocean regions. Environmental Microbiology, 2009, 11, 1340-1347.	3.8	149
99	News About Nitrogen. Science, 2008, 320, 757-758.	12.6	23
100	Patterns and Implications of Gene Gain and Loss in the Evolution of Prochlorococcus. PLoS Genetics, 2007, 3, e231.	3.5	469
101	Genomic Islands and the Ecology and Evolution of Prochlorococcus. Science, 2006, 311, 1768-1770.	12.6	437
102	Sequencing genomes from single cells by polymerase cloning. Nature Biotechnology, 2006, 24, 680-686.	17.5	388
103	Prochlorococcus Ecotype Abundances in the North Atlantic Ocean As Revealed by an Improved Quantitative PCR Method. Applied and Environmental Microbiology, 2006, 72, 723-732.	3.1	138
104	Phosphate acquisition genes in Prochlorococcus ecotypes: Evidence for genome-wide adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12552-12557.	7.1	289
105	Identification of Bacteria in Biofilm and Bulk Water Samples from a Nonchlorinated Model Drinking Water Distribution System: Detection of a Large Nitrite-Oxidizing Population Associated with Nitrospira spp. Applied and Environmental Microbiology, 2005, 71, 8611-8617.	3.1	145
106	Identification of bacterial cultures from archaeological wood using molecular biological techniques. International Biodeterioration and Biodegradation, 2004, 53, 79-88.	3.9	34
107	Long-Term Succession of Structure and Diversity of a Biofilm Formed in a Model Drinking Water Distribution System. Applied and Environmental Microbiology, 2003, 69, 6899-6907.	3.1	199
108	Monitoring biofilm formation and activity in drinking water distribution networks under oligotrophic conditions. Water Science and Technology, 2003, 47, 91-7.	2.5	9

#	Article	IF	CITATIONS
109	In situ examination of microbial populations in a model drinking water distribution system. Water Science and Technology: Water Supply, 2002, 2, 283-288.	2.1	7