
F Luis Gonzalez Flecha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8535457/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of the molecular size of BSA by fluorescence anisotropy. Biochemistry and Molecular Biology Education, 2003, 31, 319-322.	1.2	86
2	Kinetics and thermodynamics of the interaction of 1-anilino-naphthalene-8-sulfonate with proteins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 1700-1708.	2.3	76
3	Reversible fast-dimerization of bovine serum albumin detected by fluorescence resonance energy transfer. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2002, 1599, 141-148.	2.3	66
4	Cooperativity in Binding Processes: New Insights from Phenomenological Modeling. PLoS ONE, 2015, 10, e0146043.	2.5	50
5	Imaging lipid lateral organization in membranes with C-laurdan in a confocal microscope. Journal of Lipid Research, 2012, 53, 609-616.	4.2	44
6	Thermal Stability of the Plasma Membrane Calcium Pump. Quantitative Analysis of Its Dependence on Lipid-Protein Interactions. Journal of Membrane Biology, 2000, 173, 215-225.	2.1	37
7	PIP Water Transport and Its pH Dependence Are Regulated by Tetramer Stoichiometry. Biophysical Journal, 2016, 110, 1312-1321.	0.5	37
8	Effects of phosphatidylethanolamine glycation on lipid–protein interactions and membrane protein thermal stability. Biochemical Journal, 2008, 416, 145-152.	3.7	36
9	Molecular Characterization of the Glycated Plasma Membrane Calcium Pump. Journal of Membrane Biology, 1999, 171, 25-34.	2.1	30
10	Structural Significance of the Plasma Membrane Calcium Pump Oligomerization. Biophysical Journal, 2002, 82, 437-446.	0.5	29
11	Reversible Unfolding of a Thermophilic Membrane Protein in Phospholipid/Detergent Mixed Micelles. Journal of Molecular Biology, 2010, 397, 550-559.	4.2	29
12	Kinetics and Thermodynamics of Membrane Protein Folding. Biomolecules, 2014, 4, 354-373.	4.0	27
13	Activation of Archaeoglobus fulgidus Cu+-ATPase CopA by cysteine. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 495-501.	2.6	25
14	Modulation of Plasma Membrane Ca2+-ATPase by Neutral Phospholipids. Journal of Biological Chemistry, 2015, 290, 6179-6190.	3.4	21
15	Identification of Transmembrane Domains of the Red Cell Calcium Pump with a New Photoactivatable Phospholipidic Probe. Biochemical and Biophysical Research Communications, 1994, 201, 194-200.	2.1	20
16	Kinetic stability of membrane proteins. Biophysical Reviews, 2017, 9, 563-572.	3.2	20
17	Oligomerization of the plasma membrane calcium pump involves two regions with different thermal stability. FEBS Letters, 2000, 483, 99-103.	2.8	19
18	Molecular Basis of Hydroperoxide Specificity in Peroxiredoxins: The Case of AhpE from <i>Mycobacterium tuberculosis</i> . Biochemistry, 2015, 54, 7237-7247.	2.5	18

F LUIS GONZALEZ FLECHA

#	Article	IF	CITATIONS
19	Thermal stability of CopA, a polytopic membrane protein from the hyperthermophile Archaeoglobus fulgidus. Archives of Biochemistry and Biophysics, 2008, 471, 198-206.	3.0	17
20	Stoichiometry of lipid-protein interaction assessed by hydrophobic photolabeling. FEBS Letters, 2006, 580, 607-612.	2.8	15
21	A Two-Stage Model for Lipid Modulation of the Activity of Integral Membrane Proteins. PLoS ONE, 2012, 7, e39255.	2.5	15
22	The membrane topology of the aminoâ€ŧerminal domain of the red cell calcium pump. Protein Science, 1997, 6, 1708-1717.	7.6	13
23	Labeling of proteins with fluorescent probes: Photophysical characterization of dansylated bovine serum albumin. Biochemistry and Molecular Biology Education, 2003, 31, 333-336.	1.2	13
24	Cooperativity in proton sensing by PIP aquaporins. FEBS Journal, 2019, 286, 991-1002.	4.7	12
25	Improving the stability of the malachite green method for the determination of phosphate using Pluronic F68. Analytical Biochemistry, 2020, 597, 113681.	2.4	12
26	Ghrelin binding to serum albumin and its biological impact. Molecular and Cellular Endocrinology, 2016, 436, 130-140.	3.2	11
27	Gain of local structure in an amphipathic peptide does not require a specific tertiary framework. Proteins: Structure, Function and Bioinformatics, 2010, 78, 2757-2768.	2.6	10
28	Opposing Effects of Na ⁺ and K ⁺ on the Thermal Stability of Na ⁺ ,K ⁺ -ATPase. Journal of Physical Chemistry B, 2012, 116, 3421-3429.	2.6	10
29	A helix–coil transition induced by the metal ion interaction with a grafted iron-binding site of the CyaY protein family. Dalton Transactions, 2015, 44, 2370-2379.	3.3	10
30	Biochemical, biophysical, and functional properties of ICA512/IA-2 RESP18 homology domain. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 511-522.	2.3	10
31	Quantitative analysis of membrane protein–amphiphile interactions using resonance energy transfer. Analytical Biochemistry, 2003, 317, 171-179.	2.4	9
32	lce-induced partial unfolding and aggregation of an integral membrane protein. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 2040-2047.	2.6	9
33	Conserved Glu-47 and Lys-50 residues are critical for UDP-N-acetylglucosamine/UMP antiport activity of the mouse Golgi-associated transporter Slc35a3. Journal of Biological Chemistry, 2019, 294, 10042-10054.	3.4	7
34	The promiscuous phosphomonoestearase activity of Archaeoglobus fulgidus CopA, a thermophilic Cu + transport ATPase. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1471-1478.	2.6	6
35	Phospholipid Distribution Around the Plasma Membrane Calcium Pump: A Hydrophobic Photolabeling Study. Cell Biochemistry and Biophysics, 2006, 44, 431-437.	1.8	4
36	Unexpected Effects of K+ and Adenosine Triphosphate on the Thermal Stability of Na+,K+-ATPase. Journal of Physical Chemistry B, 2017, 121, 4949-4957.	2.6	4

F LUIS GONZALEZ FLECHA

#	Article	IF	CITATIONS
37	Functional characterization of Legionella pneumophila Cu+ transport ATPase. The activation by Cu+ and ATP. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183822.	2.6	4
38	Structural Characterization of the Glycation Process of the Plasma Membrane Calcium Pump. Annals of the New York Academy of Sciences, 1997, 834, 126-128.	3.8	3
39	On the role of citrate in 12-molybdophosphoric-acid methods for quantification of phosphate in the presence of ATP. New Journal of Chemistry, 2022, 46, 12401-12409.	2.8	3
40	Identification of Bordetella pertussis virulence-associated outer membrane proteins. FEMS Microbiology Letters, 1999, 172, 9-13.	1.8	1
41	An Improved Method to Measure the Interactions of Pâ€Type ATPases with the Lipidic Environment. Annals of the New York Academy of Sciences, 2003, 986, 283-286.	3.8	0
42	Corrigendum to "Stoichiometry of lipid-protein interaction assessed by hydrophobic photolabeling― [FEBS Lett. 580 (2006) 607-612]. FEBS Letters, 2006, 580, 2158-2158.	2.8	0
43	Cooperativity and Flexible Domains Participation in PIP Aquaporin Gating. Biophysical Journal, 2018, 114, 494a.	0.5	Ο