Agnieszka Bagniewska-Zadworna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8535161/publications.pdf

Version: 2024-02-01

Agnieszka

#	Article	IF	CITATIONS
1	Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytologist, 2021, 232, 1123-1158.	7.3	277
2	Localization and Dynamics of the Methionine Sulfoxide Reductases MsrB1 and MsrB2 in Beech Seeds. International Journal of Molecular Sciences, 2021, 22, 402.	4.1	3
3	Higher biomass partitioning to absorptive roots improves needle nutrition but does not alleviate stomatal limitation of northern Scots pine. Global Change Biology, 2021, 27, 3859-3869.	9.5	7
4	Autophagy—an underestimated coordinator of construction and destruction during plant root ontogeny. Planta, 2021, 254, 15.	3.2	5
5	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /C)verlock 1	OTf 50 582 T
6	A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytologist, 2021, 232, 973-1122.	7.3	216
7	Integration of MsrB1 and MsrB2 in the Redox Network during the Development of Orthodox and Recalcitrant Acer Seeds. Antioxidants, 2020, 9, 1250.	5.1	7
8	Seasonal senescence of leaves and roots of Populus trichocarpa—is the scenario the same or different?. Tree Physiology, 2020, 40, 987-1000.	3.1	11
9	Abscisic Acid and Jasmonate Metabolisms Are Jointly Regulated During Senescence in Roots and Leaves of Populus trichocarpa. International Journal of Molecular Sciences, 2020, 21, 2042.	4.1	9
10	Allies or Enemies: The Role of Reactive Oxygen Species in Developmental Processes of Black Cottonwood (Populus trichocarpa). Antioxidants, 2020, 9, 199.	5.1	2
11	Dehydration Sensitivity at the Early Seedling Establishment Stages of the European Beech (Fagus) Tj ETQq1 1 0.	784314 rg 2.1	gBT ₈ /Overlock
12	Occurrence of autophagy during pioneer root and stem development in Populus trichocarpa. Planta, 2019, 250, 1789-1801.	3.2	25
13	Drought-induced anatomical modifications of barley (Hordeum vulgare L.) leaves: An allometric perspective. Environmental and Experimental Botany, 2019, 166, 103798.	4.2	19
14	Xylem Cell Wall Formation in Pioneer Roots and Stems of Populus trichocarpa (Torr. & Gray). Frontiers in Plant Science, 2019, 10, 1419.	3.6	15
15	Autophagy counteracts instantaneous cell death during seasonal senescence of the fine roots and leaves in Populus trichocarpa. BMC Plant Biology, 2018, 18, 260.	3.6	21
16	Physio-Genetic Dissection of Dark-Induced Leaf Senescence and Timing Its Reversal in Barley. Plant Physiology, 2018, 178, 654-671.	4.8	40
17	The mystery of underground death: cell death in roots during ontogeny and in response to environmental factors. Plant Biology, 2016, 18, 171-184.	3.8	15
18	Direct analysis of elemental biodistribution in pea seedlings by LA-ICP-MS, EDX and confocal microscopy: Imaging and quantification. Microchemical Journal, 2016, 128, 305-311.	4.5	28

Agnieszka

#	Article	IF	CITATIONS
19	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
20	Multiple Subcellular Localizations of Dehydrin-like Proteins in the Embryonic Axes of Common Beech (Fagus sylvatica L.) Seeds During Maturation and Dry Storage. Journal of Plant Growth Regulation, 2015, 34, 137-149.	5.1	10
21	The production, localization and spreading of reactive oxygen species contributes to the low vitality of long-term stored common beech (Fagus sylvatica L.) seeds. Journal of Plant Physiology, 2015, 174, 147-156.	3.5	59
22	Root Heterogeneity and Developmental Stage Determine the Pattern of Cellulose Synthase and Cinnamyl Alcohol Dehydrogenase Gene Expression Profiles during Xylogenesis in Populus trichocarpa (Torr. et Gray). International Journal of Plant Sciences, 2015, 176, 458-467.	1.3	4
23	New insights into pioneer root xylem development: evidence obtained from Populus trichocarpa plants grown under field conditions. Annals of Botany, 2014, 113, 1235-1247.	2.9	28
24	Lignin and lignans in plant defence: Insight from expression profiling of cinnamyl alcohol dehydrogenase genes during development and following fungal infection in Populus. Plant Science, 2014, 229, 111-121.	3.6	57
25	Heterogeneity of silica and glycan-epitope distribution in epidermal idioblast cell walls in Adiantum raddianum laminae. Planta, 2013, 237, 1453-1464.	3.2	23
26	Avoiding transport bottlenecks in an expanding root system: Xylem vessel development in fibrous and pioneer roots under field conditions. American Journal of Botany, 2012, 99, 1417-1426.	1.7	52
27	A successful application of the embryo rescue technique as a model for studying crosses between Salix viminalis and Populus species. Australian Journal of Botany, 2011, 59, 382.	0.6	13
28	Phylogeny and expression profiling of CAD and CAD-like genes in hybrid Populus (P. deltoides × P.) Tj ETQqO O Plant Biology, 2010, 10, 100.	0 rgBT /0 3.6	verlock 10 Tf 69
29	Cytological analysis of hybrid embryos of intergeneric crosses between Salix viminalis and Populus species. Australian Journal of Botany, 2010, 58, 42.	0.6	11
30	The cinnamyl alcohol dehydrogenase gene family in Populus: phylogeny, organization, and expression. BMC Plant Biology, 2009, 9, 26.	3.6	125
31	Phenolic compound localisation in Polypodium vulgare L. rhizomes after mannitol-induced dehydration and controlled desiccation. Plant Cell Reports, 2008, 27, 1251-1259.	5.6	15
32	The root microtubule cytoskeleton and cell cycle analysis through desiccation of Brassica napus seedlings. Protoplasma, 2008, 233, 177-185.	2.1	30
33	The effect of dehydration with or without abscisic acid pretreatment on buds regeneration from Polypodium vulgare L. rhizomes. Acta Physiologiae Plantarum, 2007, 29, 47-56.	2.1	10